Определение расстояния между скрещивающимися прямыми. Расстояние между скрещивающимися прямыми

В данной статье на примере решения задачи C2 из ЕГЭ разобран способ нахождения с помощью метода координат. Напомним, что прямые являются скрещивающи-мися, если они не лежат в одной плоскости. В частности, если одна прямая лежит в плоскости, а вторая прямая пересекает эту плоскость в точке, которая не лежит на первой прямой, то такие прямые являются скрещивающимися (см. рисунок).

Для нахождения расстояния между скрещивающимися прямыми необходимо:

  1. Провести через одну из скрещивающихся прямых плоскость, которая параллельна другой скрещивающейся прямой.
  2. Опустить перпендикуляр из любой точки второй прямой на полученную плоскость. Длина этого перпендикуляра будет являться искомым расстоянием между прямыми.

Разберем данный алгоритм подробнее на примере решения задачи C2 из ЕГЭ по математике.

Расстояние между прямыми в пространстве

Задача. В единичном кубе ABCDA 1 B 1 C 1 D 1 найдите расстояние между прямыми BA 1 и DB 1 .

Рис. 1. Чертеж к задаче

Решение. Через середину диагонали куба DB 1 (точку O ) проведем прямую, параллельную прямой A 1 B . Точки пересечения данной прямой с ребрами BC и A 1 D 1 обозначаем соответственно N и M . Прямая MN лежит в плоскости MNB 1 и параллельна прямой A 1 B , которая в этой плоскости не лежит. Это означает, что прямая A 1 B параллельна плоскости MNB 1 по признаку параллельности прямой и плоскости (рис. 2).

Рис. 2. Искомое расстояние между скрещивающимися прямыми равно расстоянию от любой точки выделенной прямой до изображенной плоскости

Ищем теперь расстояние от какой-нибудь точки прямой A 1 B до плоскости MNB 1 . Это расстояние по определению будет являться искомым расстоянием между скрещивающимися прямыми.

Для нахождения этого расстояния воспользуемся методом координат. Введем прямоугольную декартову систему координат таким образом, чтобы ее начало совпало с точкой B, ось X была направлена вдоль ребра BA , ось Y — вдоль ребра BC , ось Z — вдоль ребра BB 1 (рис. 3).

Рис. 3. Прямоугольную декартову систему координат выберем так, как показано на рисунке

Находим уравнение плоскости MNB 1 в данной системе координат. Для этого определяем сперва координаты точек M , N и B 1: Полученные координаты подставляем в общее уравнение прямой и получаем следующую систему уравнений:

Из второго уравнения системы получаем из третьего получаем после чего из первого получаем Подставляем полученные значения в общее уравнение прямой:

Замечаем, что иначе плоскость MNB 1 проходила бы через начало координат. Делим обе части этого уравнения на и получаем:

Расстояние от точки до плоскости определяется по формуле.

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Стереометрия Расстояние между скрещивающимися прямыми

Общим перпендикуляром двух скрещивающихся прямых называют отрезок с концами на этих прямых, являющийся перпендикуляром к каждой из них. a b A B Расстоянием между скрещивающимися прямыми называют длину их общего перпендикуляра.

Способы вычисления расстояния между скрещивающимися прямыми. Расстояние между скрещивающимися прямыми равно расстоянию от любой точки одной из этих прямых до плоскости, проходящей через вторую прямую параллельно первой прямой.

Способы вычисления расстояния между скрещивающимися прямыми. Расстояние между скрещивающимися прямыми равно расстоянию между двумя параллельными плоскостями, содержащими эти прямые.

№ 1 В единичном кубе найдите

№ 2 В единичном кубе найдите

№ 3 В единичном кубе найдите

№ 4 В единичном кубе найдите

Общий перпендикуляр двух скрещивающихся прямых и есть отрезок, соединяющий середины отрезков и Е – середина F – середина

№ 5 В единичном кубе найдите ~

Способы вычисления расстояния между скрещивающимися прямыми. Расстояние между скрещивающимися прямыми равно расстоянию между их проекциями на плоскость, перпендикулярную одной из них.

№ 5 В единичном кубе найдите O – проекция прямой АС на плоскость

№ 6 Дана правильная пирамида PABC c боковым ребром PA = 3 и стороной основания 2 . Найдите

Прямоугольный - прямоугольный - прямоугольный

№ 7 В единичном кубе найдите расстояние между прямыми и


По теме: методические разработки, презентации и конспекты

Угол между скрещивающимися прямыми

Презентация для подготовки к сдаче ЕГЭ по математике по теме "Угол между скрещивающимися прямыми"...

Разработана совместно с учащимися 11 класса. Рассмотрены различные методы решения задач по данной теме....

Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

РАССТОЯНИЕ МЕЖДУ СКРЕЩИВАЮЩИМИСЯ ПРЯМЫМИ Координатным и векторным способом Алферова Наталья Васильевна, учитель математики МКОУ «Горячеключевская СОШ» Омского района Омской области

2 слайд

Описание слайда:

Основные понятия Расстоянием между скрещивающимися прямыми называется длина общего перпендикуляра к данным прямым Расстоянием между скрещивающимися прямыми называется расстояние от точки одной прямой до плоскости параллельной данной прямой и содержащей вторую прямую.

3 слайд

Описание слайда:

В единичном кубе ABCDA1B1C1D1 найдите расстояние между прямыми BA1 и DB1. х y z Точки A1 (1;0;1), B (1;1;0) Вектор A1B {0;1;-1} Точки D (0;0;0), B1 (1;1;1) Вектор DB1 {1;1;1} Пусть КМ ┴А1В и КМ┴DВ1, значит КМ – искомое расстояние. Пусть точка К лежит на прямой A1B, а точка М на прямой DB1. Рассмотрим векторы А1К и DM, сонаправленные с направляющими векторами данных прямых. По лемме о коллинеарных векторах вектор А1К = а · А1В, т.е. вектор А1К{0;a;-a}, вектор DM = b · DB1, т.е. вектор DM {b;b;b}. Тогда К(1;а;1-а), М(b;b;b) и вектор КМ {b-1;b-a;b-1+a}. К М

4 слайд

Описание слайда:

Решим систему из условия перпендикулярности двух векторов KM·A1B=0 0·(b-1)+1·(b-a)-1·(b-1+a) = 0, KM·DB1=0 1·(b-1)+1·(b-a)+1·(b-1+a) = 0 Решив систему получаем a=1/2, b=2/3, подставим эти значения в координаты вектора КМ: КМ { -1/3; 1/6; 1/6}. Найдём длину вектора |КМ| =√х²+y²+z², |КМ| =√1/9+1/36+1/36=√6/6. Ответ: √6/6 a·b = x1x2+y1y2+z1z2 = 0

5 слайд

Описание слайда:

В единичном кубе ABCDA1B1C1D1 найдите расстояние между прямыми BA1 и DB1. K M x y z KM=MB1+BB1+BK=a·DB1+B1B+b·BA1 DB1{1;1;1}, BA1 {0;-1;1}, B1B{0;0;1} KM = {a; a ;a} + {0; 0; 1} + {0; -b ; b}= = {a; a- b; a+1+b} KM·BA1=0 0·a-1·(a-b) +1·(a+1+b)=0, KM·DB1=0 1·a+1·(a-b)+1·(a+1+b) = 0 b= -½, a= -⅓ KM {-1/3; 1/6;1/6} |KM|= √1/9+1/36+1/36 =√6/6

6 слайд

Описание слайда:

В правильной треугольной призме АВСА1В1С1, все ребра которой равны 1, найдите расстояние между прямыми АВ и СВ1 z y x Рассмотрим плоскость (А1В1С), содержащую прямую В1С и параллельную прямой АВ. Расстоянием между скрещивающимися прямыми будет расстояние от точки прямой АВ, например от А, до плоскости (А1В1С). Введём прямоугольную систему координат ОХУZ так, чтобы ось ОХ была параллельна высоте ВН основания, ось ОУ совпадала с АС, ось ОZ совпадала с АА1. Н

7 слайд

Описание слайда:

Рассмотрим ∆АВС в плоскости ОХУ x y A C B H ∆ ABC – правильный, АВ=ВС=АС=1, ВН=√3/2. Составим уравнение плоскости (А1В1С): Ax+By+Cz+D=0. A1(0;0;1), B1(√3/2; 1/2 ;1), C(0;1;0) , подставляем координаты точек в уравнение плоскости, получим систему: 0A+0B+1C+D=0, (√3/2)A+(1/2)B+1C+D=0, 0A+1B+0C+D=0. Получаем C=-D, B=-D, A= (√3/3)D. Уравнение плоскости (А1В1С1): (√3/3)Dx-Dy-Dz+D=0, (√3/3)x-1y-1z+1=0, Формула расстояния от точки до плоскости: d= где (х0;у0;z0)- координаты точки A, d = |√3/3·0-1·0-1·0 +1| / √ (√3/3)²+1+1 =√21/7. Ответ: √21/7. х у z H

С помощю этого онлайн калькулятора можно найти расстояние между прямыми в пространстве. Дается подробное решение с пояснениями. Для вычисления расстояния между прямыми в пространстве, задайте вид уравнения прямых ("канонический" или "параметрический"), введите коэффициенты уравнений прямых в ячейки и нажимайте на кнопку "Решить".

×

Предупреждение

Очистить все ячейки?

Закрыть Очистить

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Расстояние между прямыми в пространстве − теория, примеры и решения

Пусть задана декартова прямоугольная система координат Oxyz L 1 и L 2:

. (1)
, (2)

где M 1 (x 1 , y 1 , z 1) и M 2 (x 2 , y 2 , z 2) − точки, лежащие на прямых L 1 и L 2 , а q 1 ={m 1 , p 1 , l 1 } и q 2 ={m 2 , p 2 , l 2 } − направляющие векторы прямых L 1 и L 2 , соответственно.

Прямые (1) и (2) в пространстве могут совпадать, быть паралленьными, пересекаться, или быть скрещивающимся. Если прямые в пространстве пересекаются или совпадают, то расстояние между ними равно нулю. Мы рассмотрим два случая. Первый − прямые параллельны, и второй − прямые скрещиваются. Остальные являются частыми случаями. Если при вычислении расстояния между параллельными прямыми мы получим расстояние равным нулю, то это значит, что эти прямые совпадают. Если же расстояние между скрещивающимися прямыми равно нулю, то эти прямые пересекаются.

1. Расстояние между параллельными прямыми в пространстве

Рассмотрим два метода вычисления расстояния между прямыми.

Метод 1. От точки M 1 прямой L 1 проводим плоскость α , перпендикулярно прямой L 2 . Находим точку M 3 (x 3 , y 3 , y 3) пересечения плоскости α и прямой L 3 . По сути мы находим проекцию точки M 1 на прямую L 2 . Как найти проекцию точки на прямую посмотрите . Далее вычисляем расстояние между точками M 1 (x 1 , y 1 , z 1) и M 3 (x 3 , y 3 , z 3):

Пример 1. Найти расстояние между прямыми L 1 и L 2:

Прямая L 2 проходит через точку M 2 (x 2 , y 2 , z 2)=M

Подставляя значения m 2 , p 2 , l 2 , x 1 , y 1 , z 1 в (5) получим:

Найдем точку пересечения прямой L 2 и плоскости α , для этого построим параметрическое уравнение прямой L 2 .

Чтобы найти точку пересечения прямой L 2 и плоскости α , подставим значения переменных x , y , z из (7) в (6):

Подставляя полученное значение t в (7), получим точку пересеченияпрямой L 2 и плоскости α :

Остается найти расстояние между точками M 1 и M 3:

L 1 и L 2 равно d =7.2506.

Метод 2. Найдем расстояние между прямыми L 1 и L 2 (уравнения (1) и (2)). Во первых, проверяем параллельность прямых L 1 и L 2 . Если направляющие векторы прямых L 1 и L 2 коллинеарны, т.е. если существует такое число λ, что выполнено равенство q 1 =λ q 2 , то прямые L 1 и L 2 параллельны.

Данный метод вычисления расстояния между параллельными векторами основана на понятии векторного произведения векторов. Известно, что норма векторного произведения векторов и q 1 дает площадь параллелограмма, образованного этими векторами (Рис.2). Узнав площадь параллелограмма, можно найти вершину параллелограмма d , разделив площадь на основание q 1 параллелограмма.

q 1:

.

Расстояние между прямыми L 1 и L 2 равно:

,
,

Пример 2. Решим пример 1 методом 2. Найти расстояние между прямыми

Прямая L 2 проходит через точку M 2 (x 2 , y 2 , z 2)=M 2 (8, 4, 1) и имеет направляющий вектор

q 2 ={m 2 , p 2 , l 2 }={2, −4, 8}

Векторы q 1 и q 2 коллинеарны. Следовательно прямые L 1 и L 2 параллельны. Для вычисления расстояния между параллельными прямыми воспользуемся векторным произведением векторов.

Построим вектор ={x 2 −x 1 , y 2 −y 1 , z 2 −z 1 }={7, 2, 0}.

Вычислим векторное произведение векторов и q 1 . Для этого составим 3×3 матрицу, первая строка которой базисные векторы i, j, k , а остальные строки заполнены элементами векторов и q 1:

Таким образом, результатом векторного произведения векторов и q 1 будет вектор:

Ответ: Расстояние между прямыми L 1 и L 2 равно d =7.25061.

2. Расстояние между скрещивающимися прямыми в пространстве

Пусть задана декартова прямоугольная симтема координат Oxyz и пусть в этой системе координат заданы прямые L 1 и L 2 (уравнения (1) и (2)).

Пусть прямые L 1 и L 2 не параллельны (паралельные прямые мы расстотрели в предыдущем параграфе). Чтобы найти расстояние между прямыми L 1 и L 2 нужно построить параллельные плоскости α 1 и α 2 так, чтобы прямая L 1 лежал на плоскости α 1 а прямая L 2 − на плоскости α 2 . Тогда расстояние между прямыми L 1 и L 2 равно расстоянию между плоскостями L 1 и L 2 (Рис. 3).

где n 1 ={A 1 , B 1 , C 1 } − нормальный вектор плоскости α 1 . Для того, чтобы плоскость α 1 проходила через прямую L 1 , нормальный вектор n 1 должен быть ортогональным направляющему вектору q 1 прямой L 1 , т.е. скалярное произведение этих векторов должен быть равным нулю:

Решая систему линейных уравнений (27)−(29), с тремя уравнениями и четыремя неизвестными A 1 , B 1 , C 1 , D 1 , и подставляя в уравнение

Плоскости α 1 и α 2 параллельны, следовательно полученные нормальные векторыn 1 ={A 1 , B 1 , C 1 } и n 2 ={A 2 , B 2 , C 2 } этих плоскостей коллинеарны. Если эти векторы не равны, то можно умножить (31) на некторое число так, чтобы полученный нормальный вектор n 2 совпадал с нормальным вектором уравнения (30).

Тогда расстояние между параллельными плоскостями вычисляется формулой:

(33)

Решение. Прямая L 1 проходит через точку M 1 (x 1 , y 1 , z 1)=M 1 (2, 1, 4) и имеет направляющий вектор q 1 ={m 1 , p 1 , l 1 }={1, 3, −2}.

Прямая L 2 проходит через точку M 2 (x 2 , y 2 , z 2)=M 2 (6, −1, 2) и имеет направляющий вектор q 2 ={m 2 , p 2 , l 2 }={2, −3, 7}.

Построим плоскость α 1 , проходящую через прямую L 1 , параллельно прямой L 2 .

Поскольку плоскость α 1 проходит через прямую L 1 , то она проходит также через точку M 1 (x 1 , y 1 , z 1)=M 1 (2, 1, 4) и нормальный вектор n 1 ={m 1 , p 1 , l 1 } плоскости α 1 перпендикулярна направляющему вектору q 1 прямой L 1 . Тогда уравнение плоскости должна удовлетворять условию:

Так как плоскость α 1 должна быть параллельной прямой L 2 , то должна выполнятся условие:

Представим эти уравнения в матричном виде:

(40)

Решим систему линейных уравнений (40) отностительно A 1 , B 1 , C 1 , D 1.

Цели и задачи:

  • образовательная – формирование и развитие у учащихся пространственных представлений; выработка навыков решения задач на нахождение расстояния между скрещивающимися прямыми
  • воспитательная - воспитывать волю и настойчивость для достижения конечных результатов при нахождении расстояния между скрещивающимися прямыми; воспитывать любовь и интерес к изучению математики.
  • развивающая – развитие у учащихся логического мышления, пространственных представлений, развитие навыков самоконтроля.

Проект соответствует следующим пунктам тематического учебного плана школьного предмета.

  1. Скрещивающиеся прямые.
  2. Признак параллельности прямой и плоскости
  3. Ортогональная проекция в пространстве.
  4. Объем многогранников.

Вступление.

Скрещивающиеся прямые - это удивительно!

Если бы их не было, жизнь была бы во сто крат менее интересной. Так и хочется сказать, что если и стереометрию стоит изучать, то из-за того, что в ней есть скрещивающиеся прямые. Сколько у них глобальных, интереснейших свойств: в архитектуре, в строительстве, в медицине, в природе.

Так хочется, чтобы наше удивление перед уникальностью скрещивающихся прямых передалось и вам. Но как это сделать?

Может быть ответом на этот вопрос будет наш проект?

Известно, что длина общего перпендикуляра скрещивающихся прямых равна расстоянию между этими прямыми.

Теорема: Расстояние между двумя скрещивающимися прямыми равно расстоянию между параллельными плоскостями, проходящими через эти прямые.

Следующая теорема дает один из способов нахождения расстояния и угла между скрещивающимися прямыми.

Расстояние между скрещивающимися прямыми равно расстоянию от точки, являющейся проекцией одной из данных прямых на перпендикулярную ей плоскость, до проекции другой прямой на эту же плоскость.

Основополагающий вопрос:

А можно найти расстояние между скрещивающимися прямыми без построения их общего перпендикуляра?

Рассмотрим задачу с кубом.

Почему с кубом? Да потому что в кубе скрыта вся геометрия, в том числе и геометрия скрещивающихся прямых.

Задача.

Ребро куба равно a . Найти расстояние между прямыми, на которых лежат скрещивающиеся диагонали двух смежных граней куба.

Применим различные методы исследования к данной задаче.

  • по определению;
  • методом проекций;
  • методом объемов;
  • методом координат.

Исследования.

Класс делится на группы по методу исследования задачи. Перед каждой группой стоит задача – показать и доказать применение данного метода для нахождения расстояния между скрещивающимися прямыми. Завершающим этапом исследования задачи являются защита проектов в виде презентаций, публикаций или сайтов. Ребята и учитель имеют возможность оценить проект каждой группы по критериям, разработанных для публикаций, презентаций.

Метод объемов.

  • построить пирамиду, в которой высота, опущенная из вершины этой пирамиды на плоскость основания, является искомым расстоянием между двумя скрещивающимися прямыми;
  • доказать, что эта высота и есть искомое расстояние;
  • найти объём этой пирамиды двумя;
  • способами и выразить эту высоту;

Этот метод очень интересен своей нестандартностью, красотой и индивидуальностью. Метод объёмов способствует развитию пространственного воображения и умению мысленно создавать представления о форме фигур.

В результате дополнительных построений мы получили пирамиду DAB 1 C.

В пирамиде DAB 1 C, высота, опущенная из вершины D на плоскость основания AB 1 C будет являться искомым расстоянием между скрещивающимися прямыми АС и DC 1 .

Рассмотрим пирамиду Вывод: Рассмотрим эту же пирамиду, но уже с вершиной в точке D:

Учитывая, что V1 = V2 , получим d=

Искомое расстояние.

Метод проекций.

  1. Выбираем плоскость, перпендикулярную одной из скрещивающихся прямых.
  2. Проецируем каждую прямую на эту плоскость.
  3. Расстояние между проекциями будет расстоянием между скрещивающимися прямыми.

Расстояние между скрещивающимися прямыми можно определить как расстояние между ортогональными проекциями этих прямых на плоскость проекций.

Использование определения скрещивающихся прямых.

Дополнительные построения: А1В, ВD, AK.

А 1 О ВD, ОС BD

BD пересекающимся прямым А 1 О и ОС

Похожие статьи

  • Почему имя Савва наделяет мудростью и силой своего обладателя?

    По ХигируИмя Савва древнееврейского происхождения. Означает: неволя, плен. Маленький Саввушка обычно растет крепышом, ни его здоровье, ни поведение не доставляют родителям никаких проблем: это жизнерадостный, добрый и спокойный ребенок....

  • Замораживаем рыжики на зиму Хранение соленых рыжиков

    Вкусные, питательные и полезные рыжики отлично подходят для добавления в повседневные блюда или в качестве изысканного угощения к праздничному столу. Наиболее популярным вариантом их приготовления является засолка холодным способом,...

  • Золотые кони хана батыя - легендарные сокровища, точное местонахождение

    из Энциклопедии чудес, загадок и тайн ЗОЛОТЫЕ КОНИ ХАНА БАТЫЯ - легендарные сокровища, точное местонахождение которых до сих пор неизвестно. История коней примерно такова: После того, как хан Батый разорил Рязань и Киев, он...

  • Какую говядину лучше варить

    Покупка мяса - это самая существенная часть продовольственного бюджета любой семьи (за исключением вегетарианской). Кто-то предпочитает свинину, кто-то птицу, однако наиболее полезной и питательной считается говядина. Это мясо не самое...

  • Какие социальные сети существуют для общения с друзьями и родственниками

    Сегодня соцсети настолько прочно укоренились в нашей жизни, что состав пятерки самых популярных социальных площадок практически не меняется из года в год. Тем не менее, масштабы проникновения и использования этих соцсетей отличаются в...

  • Обзор самых новых лекарств от рака

    Предлагаю вашему вниманию простые, проверенные временем, средства народной медицины, которые помогут при онкологических заболеваниях .Звездчатка (мокрица). Сок растения, крепкий настой и отвар применяется для местных ванн и примочек при...