Вещество снижающее скорость химической реакции. Факторы, влияющие на скорость химической реакции

Скорость реакции. При взаимодействии реагентов (исходных веществ) происходит изменение количества реагирующих веществ: уменьшение количества исходных веществ и увеличение количества продуктов реакции. Количество реагирующих веществ и образовавшихся продуктов реакции взаимосвязаны стехиометрическим уравнением реакции, поэтому о скорости реакции можно судить по изменению количества любого из веществ, участвующих в реакции. Используя стехиометрические коэффициенты, можно скорость реакции по одному веществу пересчитать на скорость реакции по другому веществу.

Однако, чтобы изменение количества вещества не было безотносительным (действительно, в реакции можно использовать разные количества вещества) его относят к единице объема в случае гомогенной реакции или к единице поверхности раздела фаз - в случае гетерогенной реакции. В самом деле, происходит ли изменение массы реагирующего вещества (например, хлора при взаимодействии с водородом) в объеме пробирки или цистерны; между куском угля (или его крошкой) с кислородом - разница есть и довольно существенная. В первом случае скорость расходования вещества будет обратно пропорциональна объему, во втором - прямо пропорциональна величине поверхности. Поэтому в определении скорости реакции должно фигурировать понятие концентрации вещества, а в случае гетерогенных реакций скорость превращения следует относить и к единице поверхности раздела фаз. Л поскольку изменение количества вещества определяют во времени, его нужно относить и к единице времени.

Таким образом, общее определение скорости реакции можно сформулировать таким образом. Скорость реакции - это число элементарных актов превращения вещества, происходящих в единице объема (для гомогенных реакций) или на единице поверхности раздела фаз (для гетерогенных реакций) за единицу времени.

Принимая во внимание, что количество вещества в единице объема - не что иное, как концентрация вещества, можно дать определение скорости реакции и так: скорость реакции - это изменение концентрации реагирующего вещества за единицу времени.

Предположим, что имеется реакция, описываемая следующим уравнением:

где А и В - исходные вещества: D и F - продукты реакции; т, п, р и g - стехиометрические коэффициенты.

О скорости этой реакции можно судить по скорости уменьшения концентрации исходного вещества А или В а также по скорости увеличения (накопления) концентрации продуктов D или F .

Графически изменение концентрации веществ А и D во времени отображается зависимостями, представленными на рис. 15.2 (кривые С А и C D соответственно).

Рис. 15.2.

Скорость химической реакции изменяется с течением времени из-за различных факторов: изменения концентрации исходных веществ, их свойств, температуры и многих других факторов. Поэтому различают среднюю и истинную скорость реакции.

Средней скоростью химической реакции называют изменение концентрации ΔС реагирующего вещества, отнесенное к конечному интервалу времени Δt , в течение которого это изменение произошло. Применительно к рассматриваемой реакции, согласно рис. 15.2, можно написать выражение для средней скорости реакции за интервал времени Δt по веществу А :

или по компоненту (веществу) D :

Скорость реакции принято считать положительной величиной. Отношение же Δ С/Δt. может быть как положительным, так и отрицательным, в зависимости от соотношения концентраций в начальном и конечном моментах времени. В соответствии с этим перед выражением скорости химической реакции в общем случае принято ставить знаки "±":

Истинной скоростью реакции в данный момент времени называется изменение концентрации какого-либо компонента, отнесенное к бесконечно малому промежутку времени

(15.2)

а это - не что иное, как производная концентрации по времени.

Размерность скорости выражается в единицах концентрации, отнесенной к единице времени. Концентрацию в химической кинетике принято выражать либо числом молекул в единице объема [например, число моле- кул/ см 3 , или просто (см 3)], либо числом молей в одном литре (моль/л).

Соответственно и скорость будет измеряться в соответствующих единицах: молекул/( см 3 с); молекул/^ м 3 ч) и т.п., либо: мольДл ч); мольДл с) и т.д.

Истинную скорость реакции можно определить графически, проведя касательную к кинетической кривой (рис. 15.3); истинная скорость реакции в данный момент времени равна по абсолютной величине тангенсу угла наклона касательной (угловому коэффициенту в данной точке):

Рис. 15.3 . Графическое определение v и ст

Необходимо отмстить, что в случае, если стехиометрические коэффициенты в уравнении химической реакции неодинаковы, величина скорости реакции будет зависеть от того, изменение концентрации какого реагента определялось. Очевидно, что в реакции

концентрации водорода, кислорода и воды изменяются в различной степени.

Скорость химической реакции зависит от множества факторов: природы реагирующих веществ, их концентрации, температуры, природы растворителя и т.д.

Изучением скорости химической реакции и условиями, влияющими на ее изменение, занимается одно из направлений физической химии - химическая кинетика. Она также рассматривает механизмы протекания этих реакций и их термодинамическую обоснованность. Эти исследования важны не только в научных целях, но и для контроля взаимодействия компонентов в реакторах при производстве всевозможных веществ.

Понятие скорости в химии

Скоростью реакции принято называть некое изменение концентраций, вступивших в реакцию соединений (ΔС) в единицу времени (Δt). Математическая формула скорости химической реакции выглядит следующим образом:

ᴠ = ±ΔC/Δt.

Измеряют скорость реакции в моль/л∙с, если она происходит во всем объеме (то есть реакция гомогенная) и в моль/м 2 ∙с, если взаимодействие идет на поверхности, разделяющей фазы (то есть реакция гетерогенная). Знак «-» в формуле имеет отношение к изменению значений концентраций исходных реагирующих веществ, а знак «+» - к изменяющимся значениям концентраций продуктов той же самой реакции.

Примеры реакций с различной скоростью

Взаимодействия химических веществ могут осуществляться с различной скоростью. Так, скорость нарастания сталактитов, то есть образования карбоната кальция, составляет всего 0,5 мм за 100 лет. Медленно идут некоторые биохимические реакции, например, фотосинтез и синтез белка. С довольно низкой скоростью протекает коррозия металлов.

Средней скоростью можно охарактеризовать реакции, требующие от одного до нескольких часов. Примером может послужить приготовление пищи, сопровождающееся разложением и превращением соединений, содержащихся в продуктах. Синтез отдельных полимеров требует нагревания реакционной смеси в течение определенного времени.

Примером химических реакций, скорость которых довольно высока, могут послужить реакции нейтрализации, взаимодействие гидрокарбоната натрия с раствором уксусной кислоты, сопровождающееся выделением углекислого газа. Также можно упомянуть взаимодействие нитрата бария с сульфатом натрия, при котором наблюдается выделение осадка нерастворимого сульфата бария.

Большое число реакций способно протекать молниеносно и сопровождаются взрывом. Классический пример - взаимодействие калия с водой.

Факторы, влияющие на скорость химической реакции

Стоит отметить, что одни и те же вещества могут реагировать друг с другом с различной скоростью. Так, например, смесь газообразных кислорода и водорода может довольно длительное время не проявлять признаков взаимодействия, однако при встряхивании емкости или ударе реакция приобретает взрывной характер. Поэтому химической кинетикой и выделены определенные факторы, которые имеют способность оказывать влияние на скорость химической реакции. К ним относят:

  • природу взаимодействующих веществ;
  • концентрацию реагентов;
  • изменение температуры;
  • наличие катализатора;
  • изменение давления (для газообразных веществ);
  • площадь соприкосновения веществ (если говорят о гетерогенных реакциях).

Влияние природы вещества

Столь существенное отличие в скоростях химических реакций объясняется разными значениями энергии активации (Е а). Под ней понимают некое избыточное количество энергии в сравнении со средним ее значением, необходимым молекуле при столкновении, для того чтобы реакция произошла. Измеряется в кДж/моль и значения обычно бывают в границах 50-250.

Принято считать, что если Е а =150 кДж/моль для какой-либо реакции, то при н. у. она практически не протекает. Эта энергия тратится на преодоление отталкивания между молекулами веществ и на ослабление связей в исходных веществах. Иными словами, энергия активации характеризует прочность химических связей в веществах. По значению энергии активации можно предварительно оценить скорость химической реакции:

  • Е а < 40, взаимодействие веществ происходят довольно быстро, поскольку почти все столкнове-ния частиц при-водят к их реакции;
  • 40-<Е а <120, предполагается средняя реакция, поскольку эффективными будет лишь половина соударений молекул (например, реакция цинка с соляной кислотой);
  • Е а >120, только очень малая часть стол-кновений частиц приведет к реакции, и скорость ее будет низкой.

Влияние концентрации

Зависимость скорости реакции от концентрации вернее всего характеризуется законом действующих масс (ЗДМ), который гласит:

Скорость химической реакции имеет прямо пропорциональную зависимость от произведения концентраций, вступивших в реакцию веществ, значения которых взяты в степенях, соответствующих им стехиометрическим коэффициентам.

Этот закон подходит для элементарных одностадийных реакций, или же какой-либо стадии взаимодействия веществ, характеризующегося сложным механизмом.

Если требуется определить скорость химической реакции, уравнение которой можно условно записать как:

αА+ bB = ϲС, то,

в соответствии с выше обозначенной формулировкой закона, скорость можно найти по уравнению:

V=k·[A] a ·[B] b , где

a и b - стехиометрические коэффициенты,

[A] и [B] - концентрации исходных соединений,

k - константа скорости рассматриваемой реакции.

Смысл коэффициента скорости химической реакции заключается в том, что ее значение будет равно скорости, если концентрации соединений будут равны единицам. Следует отметить, что для правильного расчета по этой формуле стоит учитывать агрегатное состояние реагентов. Концентрацию твердого вещества принимают равной единице и не включают в уравнение, поскольку в ходе реакции она остается постоянной. Таким образом, в расчет по ЗДМ включают концентрации только жидких и газообразных веществ. Так, для реакции получения диоксида кремния из простых веществ, описываемой уравнением

Si (тв) + Ο 2(г) = SiΟ 2(тв) ,

скорость будет определяться по формуле:

Типовая задача

Как изменилась бы скорость химической реакции монооксида азота с кислородом, если бы концентрации исходных соединений увеличили в два раза?

Решение: Этому процессу соответствует уравнение реакции:

2ΝΟ + Ο 2 = 2ΝΟ 2 .

Запишем выражения для начальной (ᴠ 1) и конечной (ᴠ 2) скоростей реакции:

ᴠ 1 = k·[ΝΟ] 2 ·[Ο 2 ] и

ᴠ 2 = k·(2·[ΝΟ]) 2 ·2·[Ο 2 ] = k·4[ΝΟ] 2 ·2[Ο 2 ].

ᴠ 1 /ᴠ 2 = (k·4[ΝΟ] 2 ·2[Ο 2 ]) / (k·[ΝΟ] 2 ·[Ο 2 ]).

ᴠ 2 /ᴠ 1 = 4·2/1 = 8.

Ответ: увеличилась в 8 раз.

Влияние температуры

Зависимость скорости химической реакции от температуры была определена опытным путем голландским ученым Я. Х. Вант-Гоффом. Он установил, что скорость многих реакций возрастает в 2-4 раза с повышением температуры на каждые 10 градусов. Для этого правила имеется математическое выражение, которое имеет вид:

ᴠ 2 = ᴠ 1 ·γ (Τ2-Τ1)/10 , где

ᴠ 1 и ᴠ 2 - соответствующие скорости при температурах Τ 1 и Τ 2 ;

γ - температурный коэффициент, равен 2-4.

Вместе с тем это правило не объясняет механизма влияния температуры на значение скорости той или иной реакции и не описывает всей совокупности закономерностей. Логично сделать вывод о том, что с повышением температуры, хаотичное движение частиц усиливается и это провоцирует большее число их столкновений. Однако это не особо влияет на эффективность соударения молекул, поскольку она зависит, главным образом, от энергии активации. Также немалую роль в эффективности столкновения частиц имеет их пространственное соответствие друг другу.

Зависимость скорости химической реакции от температуры, учитывающая природу реагентов, подчиняется уравнению Аррениуса:

k = А 0 ·е -Еа/RΤ , где

А о - множитель;

Е а - энергия активации.

Пример задачи на закон Вант-Гоффа

Как следует изменить температуру, чтобы скорость химической реакции, у которой температурный коэффициент численно равен 3, выроста в 27 раз?

Решение. Воспользуемся формулой

ᴠ 2 = ᴠ 1 ·γ (Τ2-Τ1)/10 .

Из условия ᴠ 2 /ᴠ 1 = 27, а γ = 3. Найти нужно ΔΤ = Τ 2 -Τ 1 .

Преобразовав исходную формулу получаем:

V 2 /V 1 =γ ΔΤ/10 .

Подставляем значения: 27=3 ΔΤ/10 .

Отсюда понятно, что ΔΤ/10 = 3 и ΔΤ = 30.

Ответ: температуру следует повысить на 30 градусов.

Влияние катализаторов

В физической химии скорость химических реакций активно изучает также раздел, называемый катализом. Его интересует, как и почему сравнительно малые количества тех или иных веществ существенно увеличивают скорость взаимодействия других. Такие вещества, которые могут ускорять реакцию, но сами при этом в ней не расходуются, называются катализаторами.

Доказано, что катализаторы меняют механизм самого химического взаимодействия, способствуют появлению новых переходных состояний, для которых характерны меньшие высоты энергетического барьера. То есть они способствуют снижению энергии активации, а значит и увеличению количества эффективных ударений частиц. Катализатор не может вызвать реакцию, которая энергетически невозможна.

Так пероксид водорода способен разлагаться с образованием кислорода и воды:

Н 2 Ο 2 = Н 2 Ο + Ο 2 .

Но эта реакция очень медленная и в наших аптечках она существует в неизменном виде довольно долгое время. Открывая лишь очень старые флаконы с перекисью, можно заметить небольшой хлопок, вызванный давлением кислорода на стенки сосуда. Добавление же всего нескольких крупинок оксида магния спровоцирует активное выделение газа.

Та же реакция разложения перекиси, но уже под действием каталазы, происходит при обработке ран. В живых организмах находится много различных веществ, которые увеличивают скорость биохимических реакций. Их принято называть ферментами.

Противоположный эффект на протекание реакций оказывают ингибиторы. Однако это не всегда плохо. Ингибиторы используют для защиты металлической продукции от коррозии, для продления срока хранения пищи, например, для предотвращения окисления жиров.

Площадь соприкосновения веществ

В том случае, если взаимодействие идет между соединениями, имеющими разные агрегатные состояния, или же между веществами, которые не способны образовывать гомогенную среду (не смешивающиеся жидкости), то еще и этот фактор влияет на скорость химической реакции существенно. Связано это с тем, что гетерогенные реакции осуществляются непосредственно на границе раздела фаз взаимодействующих веществ. Очевидно, что чем обширнее эта граница, тем больше частиц имеют возможность столкнуться, и тем быстрее идет реакция.

Например, гораздо быстрее идет в виде мелких щепок, нежели в виде бревна. С той же целью многие твердые вещества растирают в мелкий порошок, прежде чем добавлять в раствор. Так, порошкообразный мел (карбонат кальция) быстрее действует с соляной кислотой, чем кусочек той же массы. Однако, помимо увеличения площади, данный прием приводит также к хаотичному разрыву кристаллической решетки вещества, а значит, повышает реакционную способность частиц.

Математически скорость гетерогенной химической реакции находят, как изменение количества вещества (Δν), происходящее в единицу вре-мени (Δt) на единице поверхности

(S): V = Δν/(S·Δt).

Влияние давления

Изменение давления в системе оказывает влияние лишь в том случае, когда в реакции принимают участие газы. Повышение давления сопровождается увеличением молекул вещества в единице объема, то есть концентрация его пропорционально возрастает. И наоборот, понижение давление приводит к эквивалентному уменьшению концентрации реагента. В этом случае подходит для вычисления скорости химической реакции формула, соответствующая ЗДМ.

Задача. Как возрастет скорость реакции, описываемой уравнением

2ΝΟ + Ο 2 = 2ΝΟ 2 ,

если объем замкнутой системы уменьшить в три раза (Т=const)?

Решение. При уменьшении объема пропорционально увеличивается давление. Запишем выражения для начальной (V 1) и конечной (V 2) скоростей реакции:

V 1 = k· 2 ·[Ο 2 ] и

V 2 = k·(3·) 2 ·3·[Ο 2 ] = k·9[ΝΟ] 2 ·3[Ο 2 ].

Чтобы найти во сколько раз новая скорость больше начальной, следует разделить левые и правые части выражений:

V 1 /V 2 = (k·9[ΝΟ] 2 ·3[Ο 2 ]) / (k·[ΝΟ] 2 ·[Ο 2 ]).

Значения концентраций и константы скорости сокращаются, и остается:

V 2 /V 1 = 9·3/1 = 27.

Ответ: скорость возросла в 27 раз.

Подводя итог, нужно отметить, что на скорость взаимодействия веществ, а точнее, на количество и качество столкновений их частиц, влияет множество факторов. В первую очередь - это энергия активации и геометрия молекул, которые практически невозможно скорректировать. Что касается остальных условий, то для роста скорости реакции следует:

  • увеличить температуру реакционной среды;
  • повысить концентрации исходных соединений;
  • увеличить давление в системе или уменьшить ее объем, если речь идет о газах;
  • привести разнородные вещества к одному агрегатному состоянию (например, растворив в воде) или увеличить площадь их соприкосновения.

Скорость химической реакции

Тема «Скорость химической реакции», пожалуй, наиболее сложная и противоречивая в школьной программе. Это связано со сложностью самой химической кинетики – одного из разделов физической химии. Неоднозначно уже само определение понятия «скорость химической реакции» (см., например, статью Л.С.Гузея в газете «Химия», 2001, № 28,
с. 12). Еще больше проблем возникает при попытке применить закон действующих масс для скорости реакции к любым химическим системам, ведь круг объектов, для которых возможно количественное описание кинетических процессов в рамках школьной программы, очень узок. Хотелось бы особо отметить некорректность использования закона действующих масс для скорости химической реакции при химическом равновесии.
В то же время вообще отказаться от рассмотрения этой темы в школе было бы неверным. Представления о скорости химической реакции очень важны при изучении многих природных и технологических процессов, без них невозможно говорить о катализе и катализаторах, в том числе и о ферментах. Хотя при обсуждении превращений веществ используются в основном качественные представления о скорости химической реакции, введение простейших количественных соотношений все же желательно, особенно для элементарных реакций.
В публикуемой статье достаточно подробно рассматриваются вопросы химической кинетики, которые можно обсуждать на школьных уроках химии. Исключение из курса школьной химии спорных и противоречивых моментов этой темы особенно важно для тех учащихся, кто собирается продолжить свое химическое образование в вузе. Ведь полученные в школе знания нередко вступают в противоречие с научной реальностью.

Химические реакции могут существенно различаться по времени протекания. Смесь водорода и кислорода при комнатной температуре может долгое время оставаться практически без изменений, однако при ударе или поджигании произойдет взрыв. Железная пластина медленно ржавеет, а кусочек белого фосфора самовоспламеняется на воздухе. Важно знать, насколько быстро протекает та или иная реакция, чтобы иметь возможность контролировать ее ход.

Основные понятия

Количественной характеристикой того, насколько быстро протекает данная реакция, является скорость химической реакции, т. е. скорость расходования реагентов или скорость появления продуктов. При этом безразлично, о каком из участвующих в реакции веществе идет речь, поскольку все они связаны между собой через уравнение реакции. По изменению количества одного из веществ можно судить о соответствующих изменениях количеств всех остальных.

Скоростью химической реакции () называют изменение количества вещества реагента или продукта () за единицу времени () в единице объема (V ):

= /(V ).

Скорость реакции в данном случае обычно выражается в моль/(л с).

Приведенное выражение относится к гомогенным химическим реакциям, протекающим в однородной среде, например между газами или в растворе:

2SO 2 + O 2 = 2SO 3 ,

BаСl 2 + Н 2 SO 4 = ВаSО 4 + 2НСl.

Гетерогенные химические реакции идут на поверхности соприкосновения твердого вещества и газа, твердого вещества и жидкости и т.п. К гетерогенным реакциям относятся, например, реакции металлов с кислотами:

Fе + 2НСl = FeСl 2 + Н 2 .

В этом случае скоростью реакции называют изменение количества вещества реагента или продукта () за единицу времени () на единице поверхности (S):

= /(S ).

Скорость гетерогенной реакции выражается в моль/(м 2 с).

Чтобы управлять химическими реакциями, важно не только уметь определять их скорости, но и выяснить, какие условия оказывают на них влияние. Раздел химии, изучающий скорость химических реакций и влияние на нее различных факторов, называется химической кинетикой .

Частота соударений реагирующих частиц

Важнейший фактор, определяющий скорость химической реакции, – концентрация .

При повышении концентрации реагирующих веществ скорость реакции, как правило, возрастает. Для того чтобы вступить в реакцию, две химические частицы должны сблизиться, поэтому скорость реакции зависит от числа столкновений между ними. Увеличение числа частиц в данном объеме приводит к более частым столкновениям и к возрастанию скорости реакции.

Для гомогенных реакций повышение концентрации одного или нескольких реагирующих веществ приведет к увеличению скорости реакции. При понижении концентрации наблюдается противоположный эффект. Концентрация веществ в растворе может быть изменена путем добавления или удаления из сферы реакции реагирующих веществ или растворителя. В газах концентрация одного из веществ может быть увеличена путем введения дополнительного количества этого вещества в реакционную смесь. Концентрации всех газообразных веществ можно увеличить одновременно, уменьшая объем, занимаемый смесью. При этом скорость реакции возрастет. Увеличение объема приводит к обратному результату.

Скорость гетерогенных реакций зависит от площади поверхности соприкосновения веществ , т.е. от степени измельчения веществ, полноты смешивания реагентов, а также от состояния кристаллических структур твердых тел. Любые нарушения в кристаллической структуре вызывают увеличение реакционной способности твердых тел, т.к. для разрушения прочной кристаллической структуры требуется дополнительная энергия.

Рассмотрим горение древесины. Целое полено горит на воздухе сравнительно медленно. Если увеличить поверхность соприкосновения дерева с воздухом, расколов полено на щепки, скорость горения увеличится. Вместе с тем древесина горит в чистом кислороде значительно быстрее, чем на воздухе, который содержит лишь около 20% кислорода.

Для протекания химической реакции должно произойти столкновение частиц – атомов, молекул или ионов. В результате столкновений происходит перегруппировка атомов и возникают новые химические связи, что приводит к образованию новых веществ. Вероятность столкновения двух частиц достаточно высока, вероятность одновременного столкновения трех частиц существенно меньше. Одновременное столкновение четырех частиц чрезвычайно маловероятно. Поэтому большинство реакций протекает в несколько стадий, на каждой из которых происходит взаимодействие не более трех частиц.

Реакция окисления бромоводорода протекает с заметной скоростью при 400–600 °С:

4НВr + O 2 = 2Н 2 О + 2Вr 2 .

В соответствии с уравнением реакции одновременно должно столкнуться пять молекул. Однако вероятность такого события практически равна нулю. Более того, экспериментальные исследования показали, что повышение концентрации – либо кислорода, либо бромоводорода – увеличивает скорость реакции в одно и то же число раз. И это при том, что на каждую молекулу кислорода расходуется четыре молекулы бромоводорода.

Детальное рассмотрение данного процесса показывает, что он протекает в несколько стадий:

1) НBr + О 2 = НООВr (медленная реакция);

2) НООВr + НВr = 2НОВr (быстрая реакция);

3) НОВr + НВr = Н 2 О + Вr 2 (быстрая реакция).

Приведенные реакции, так называемые элементарные реакции , отражают механизм реакции окисления бромоводорода кислородом. Важно отметить, что в каждой из промежуточных реакций участвует только по две молекулы. Сложение первых двух уравнений и удвоенного третьего дает суммарное уравнение реакции. Общая же скорость реакции определяется наиболее медленной промежуточной реакцией, в которой взаимодействуют одна молекула бромоводорода и одна молекула кислорода.

Скорость элементарных реакций прямо пропорциональна произведению молярных концентраций с (с – это количество вещества в единице объема, с = /V ) реагентов, взятых в степенях, равных их стехиометрическим коэффициентам (закон действующих масс для скорости химической реакции). Это справедливо лишь для уравнений реакций, отражающих механизмы реальных химических процессов, когда стехиометрические коэффициенты перед формулами реагентов соответствуют числу взаимодействующих частиц.

По числу взаимодействующих в реакции молекул различают реакции мономолекулярные, бимолекулярные и тримолекулярные. Например, диссоциация молекулярного йода на атомы: I 2 = 2I – мономолекулярная реакция.

Взаимодействие йода с водородом: I 2 + Н 2 = 2HI – бимолекулярная реакция. Закон действующих масс для химических реакций разной молекулярности записывается по-разному.

Мономолекулярные реакции:

А = В + С,

= kc A ,

где k – константа скорости реакции.

Бимолекулярные реакции:

= kc A c В.

Тримолекулярные реакции:

= kc 2 A c В.

Энергия активации

Столкновение химических частиц приводит к химическому взаимодействию лишь в том случае, если сталкивающиеся частицы обладают энергией, превышающей некоторую определенную величину. Рассмотрим взаимодействие газообразных веществ, состоящих из молекул А 2 и В 2:

А 2 + В 2 = 2АВ.

В ходе химической реакции происходит перегруппировка атомов, сопровождающаяся разрывом химических связей в исходных веществах и образованием связей в продуктах реакции. При столкновении реагирующих молекул сначала образуется так называемый активированный комплекс , в котором происходит перераспределение электронной плотности, и лишь потом получается конечный продукт реакции:

Энергию, необходимую для перехода веществ в состояние активированного комплекса, называют энергией активации .

Активность химических веществ проявляется в низкой энергии активации реакций с их участием. Чем ниже энергия активации, тем выше скорость реакции. Например, в реакциях между катионами и анионами энергия активации очень мала, поэтому такие реакции протекают почти мгновенно. Если энергия активации велика, то очень малая часть соударений приводит к образованию новых веществ. Так, скорость реакции между водородом и кислородом при комнатной температуре практически равна нулю.

Итак, на скорость реакции оказывает влияние природа реагирующих веществ . Рассмотрим для примера реакции металлов с кислотами. Если опустить в пробирки с разбавленной серной кислотой одинаковые кусочки меди, цинка, магния и железа, можно увидеть, что интенсивность выделения пузырьков газообразного водорода, характеризующая скорость протекания реакции, для этих металлов существенно различается. В пробирке с магнием наблюдается бурное выделение водорода, в пробирке с цинком пузырьки газа выделяются несколько спокойнее. Еще медленнее протекает реакция в пробирке с железом (рис.). Медь вообще не вступает в реакцию с разбавленной серной кислотой. Таким образом, скорость реакции зависит от активности металла.

При замене серной кислоты (сильной кислоты) на уксусную (слабую кислоту) скорость реакции во всех случаях существенно замедляется. Можно сделать вывод, что на скорость реакции металла с кислотой влияет природа обоих реагентов – как металла, так и кислоты.

Повышение температуры приводит к увеличению кинетической энергии химических частиц, т.е. увеличивает число частиц, имеющих энергию выше энергии активации. При повышении температуры число столкновений частиц также увеличивается, что в некоторой степени увеличивает скорость реакции. Однако повышение эффективности столкновений за счет увеличения кинетической энергии оказывает большее влияние на скорость реакции, чем увеличение числа столкновений.

При повышении температуры на десять градусов скорость увеличивается в число раз, равное температурному коэффициенту скорости :

= T +10 /T .

При повышении температуры от T до T "
отношение скоростей реакций T " и T равно
температурному коэффициенту скорости в степени (T " – T )/10:

T " /T = (T "–T )/10.

Для многих гомогенных реакций температурный коэффициент скорости равен 24 (правило Вант-Гоффа). Зависимость скорости реакции от температуры можно проследить на примере взаимодействия оксида меди(II) с разбавленной серной кислотой. При комнатной температуре реакция протекает очень медленно. При нагревании реакционная смесь быстро окрашивается в голубой цвет за счет образования сульфата меди(II):

СuО + Н 2 SО 4 = СuSO 4 + Н 2 О.

Катализаторы и ингибиторы

Многие реакции можно ускорить или замедлить путем введения некоторых веществ. Добавляемые вещества не участвуют в реакции и не расходуются в ходе ее протекания, но оказывают существенное влияние на скорость реакции. Эти вещества изменяют механизм реакции (в том числе состав активированного комплекса) и понижают энергию активации, что обеспечивает ускорение химических реакций. Вещества – ускорители реакций называют катализаторами , а само явление такого ускорения реакции – катализом .

Многие реакции в отсутствие катализаторов протекают очень медленно или не протекают совсем. Одной из таких реакций является разложение пероксида водорода:

2Н 2 О 2 = 2Н 2 О + О 2 .

Если опустить в сосуд с водным раствором пероксида водорода кусочек твердого диоксида марганца, то начнется бурное выделение кислорода. После удаления диоксида марганца реакция практически прекращается. Путем взвешивания нетрудно убедиться, что диоксид марганца в данном процессе не расходуется – он лишь катализирует реакцию.

В зависимости от того, в одинаковых или различных агрегатных состояниях находится катализатор и реагирующие вещества, различают гомогенный и гетерогенный катализ.

При гомогенном катализе катализатор может ускорить реакцию путем образования промежуточных веществ за счет взаимодействия с одним из исходных реагентов. Например:

При гетерогенном катализе химическая реакция обычно протекает на поверхности катализатора:

Катализаторы широко распространены в природе. Практически все превращения веществ в живых организмах протекают с участием органических катализаторов – ферментов.

Катализаторы используют в химическом производстве для ускорения тех или иных процессов. Кроме них применяют также вещества, замедляющие химические реакции, – ингибиторы . С помощью ингибиторов, в частности, защищают металлы от коррозии.

Факторы, влияющие на скорость химической реакции

Увеличивают скорость Уменьшают скорость
Наличие химически активных реагентов Наличие химически неактивных реагентов
Повышение концентрации реагентов Понижение концентрации реагентов
Увеличение поверхности твердых и жидких реагентов Уменьшение поверхности твердых и жидких реагентов
Повышение температуры Понижение температуры
Присутствие катализатора Присутствие ингибитора

ЗАДАНИЯ

1. Дайте определение скорости химической реакции. Напишите выражение кинетического закона действующих масс для следующих реакций:

а) 2С (тв.) + О 2 (г.) = 2СО (г.);

б) 2НI (г.) = Н 2 (г.) + I 2 (г.).

2. От чего зависит скорость химической реакции? Приведите математическое выражение зависимости скорости химической реакции от температуры.

3. Укажите, как влияет на скорость реакции (при постоянном объеме):

а) увеличение концентрации реагентов;

б) измельчение твердого реагента;
в) понижение температуры;
г) введение катализатора;
д) уменьшение концентрации реагентов;
е) повышение температуры;
ж) введение ингибитора;
з) уменьшение концентрации продуктов.

4. Рассчитайте скорость химической реакции

СО (г.) + Н 2 О (г.) = СО 2 (г.) + Н 2 (г.)

в сосуде емкостью 1 л, если через 1 мин 30 с после ее начала количество вещества водорода было 0,32 моль, а через 2 мин 10 с стало 0,44 моль. Как повлияет на скорость реакции увеличение концентрации СО?

5. В результате одной реакции за определенный промежуток времени образовалось 6,4 г йодоводорода, а в другой реакции в тех же условиях – 6,4 г диоксида серы. Сравните скорости этих реакций. Как изменятся скорости этих реакций при повышении температуры?

6. Определите скорость реакции

СО (г.) + Сl 2 (г.) = СОCl 2 (г.),

если через 20 с после начала реакции исходное количество вещества оксида углерода(II) уменьшилось c 6 моль в 3 раза (объем реактора равен 100 л). Как изменится скорость реакции, если вместо хлора использовать менее активный бром? Как изменится скорость реакции при введении
а) катализатора; б) ингибитора?

7. В каком случае реакция

СaО (тв.) + СО 2 (г.) = СaCO 3 (тв.)

протекает быстрее: при использовании крупных кусков или порошка оксида кальция? Рассчитайте:
а) количество вещества; б) массу карбоната кальция, образовавшегося за 10 с, если скорость реакции составляет 0,1 моль/(л с), объем реактора равен 1 л.

8. Взаимодействие образца магния с хлороводородной кислотой НСl позволяет получить 0,02 моль хлорида магния через 30 с после начала реакции. Определите, за какое время можно получить 0,06 моль хлорида магния.

Е) от 70 до 40 °С скорость реакции уменьшилась в 8 раз;
ж) от 60 до 40 °С скорость реакции уменьшилась в 6,25 раза;
з) от 40 до 10 °С скорость реакции уменьшилась в 27 раз.

11. Владелец автомашины покрасил ее новой краской, а затем обнаружил, что согласно инструкции она должна сохнуть 3 ч при 105 °С. За какое время высохнет краска при 25 °С, если температурный коэффициент реакции полимеризации, лежащей в основе этого процесса, равен: а) 2; б) 3; в) 4?

ОТВЕТЫ НА ЗАДАНИЯ

1. а) = kc (О 2); б) = kc (HI) 2 .

2. T +10 = T .

3. Скорость реакции увеличивается в случаях а, б, г, е; уменьшается – в, д, ж; не изменяется – з.

4. 0,003 моль/(л с). При увеличении концентрации СО скорость реакции возрастает.

5. Скорость первой реакции в 2 раза ниже.

6. 0,002 моль/(л с).

7. а) 1 моль; б) 100 г.

9. Увеличатся в 2 раза скорости реакций д, ж, з; в 4 раза – а, б, е; в 8 раз – в, г.

10. Температурный коэффициент:

2 для реакций б, е; = 2,5 – в, ж; = 3 – д, з; = 3,5 – а, г.

а) 768 ч (32 сут, т. е. более 1 месяца);
б) 19 683 ч (820 сут, т. е. более 2 лет);
в) 196 608 ч (8192 сут, т. е. 22 года).

Скорость химической реакции - изменение количества одного из реагирующих веществ за единицу времени в единице реакционного пространства.

На скорость химической реакции оказывают влияние следующие факторы:

  • природа реагирующих веществ;
  • концентрация реагирующих веществ;
  • поверхность соприкосновения реагирующих веществ (в гетерогенных реакциях);
  • температура;
  • действие катализаторов.

Теория активных столкновений позволяет объяснить влияние некоторых факторов на скорость химической реакции. Основные положения этой теории:

  • Реакции происходят при столкновении частиц реагентов, которые обладают определённой энергией.
  • Чем больше частиц реагентов, чем ближе они друг к другу, тем больше шансов у них столкнуться и прореагировать.
  • К реакции приводят лишь эффективные соударения, т.е. такие при которых разрушаются или ослабляются «старые связи» и поэтому могут образоваться «новые». Для этого частицы должны обладать достаточной энергией.
  • Минимальный избыток энергии, необходимый для эффективного соударения частиц реагентов, называется энергией активации Еа.
  • Активность химических веществ проявляется в низкой энергии активации реакций с их участием. Чем ниже энергия активации, тем выше скорость реакции. Например, в реакциях между катионами и анионами энергия активации очень мала, поэтому такие реакции протекают почти мгновенно

Влияние концентрации реагирующих веществ на скорость реакции

При повышении концентрации реагирующих веществ скорость реакции возрастает. Для того чтобы вступить в реакцию, две химические частицы должны сблизиться, поэтому скорость реакции зависит от числа столкновений между ними. Увеличение числа частиц в данном объеме приводит к более частым столкновениям и к возрастанию скорости реакции.

К увеличению скорости реакции протекающей в газовой фазе приведет повышение давления или уменьшение объема, занимаемого смесью.

На основе экспериментальных данных в 1867 г. норвежские учёные К. Гульдберг, и П Вааге и независимо от них в 1865 г. русский учёный Н.И. Бекетов сформулировали основной закон химической кинетики, устанавливающий зависимость скорости реакции от концентраций реагирующих веществ-

Закон действующих масс (ЗДМ) :

Скорость химической реакции пропорциональна произведению концентраций реагирующих веществ, взятых в степенях равных их коэффициентам в уравнении реакции. («действующая масса» – синоним современного понятия «концентрация»)

аА + bВ = cС + dD, где k – константа скорости реакции

ЗДМ выполняется только для элементарных химических реакций, протекающих в одну стадию. Если реакция протекает последовательно через несколько стадий, то суммарная скорость всего процесса определяется самой медленной его частью.

Выражения для скоростей различных типов реакций

ЗДМ относится к гомогенным реакциям. Если реакция геторогенная (реагенты находятся в разных агрегатных состояниях), то в уравнение ЗДМ входят только жидкие или только газообразные реагенты, а твердые исключаются, оказывая влияние только на константу скорости k.

Молекулярность реакции – это минимальное число молекул, участвующих в элементарном химическом процессе. По молекулярности элементарные химические реакции делятся на молекулярные (А →) и бимолекулярные (А + В →); тримолекулярные реакции встречаются чрезвычайно редко.

Скорость гетерогенных реакций

  • Зависит от площади поверхности соприкосновения веществ , т.е. от степени измельчения веществ, полноты смешивания реагентов.
  • Пример — горение древесины. Целое полено горит на воздухе сравнительно медленно. Если увеличить поверхность соприкосновения дерева с воздухом, расколов полено на щепки, скорость горения увеличится.
  • Пирофорное железо высыпают на лист фильтровальной бумаги. За время падения частицы железа раскаляются и поджигают бумагу.

Влияние температуры на скорость реакции

В XIX веке голландский ученый Вант-Гофф опытным путем обнаружил, что при повышении температуры на 10 о С скорости многих реакций возрастают в 2-4 раза.

Правило Вант-Гоффа

При повышении температуры на каждые 10 ◦ С скорость реакции увеличивается в 2-4 раза.

Здесь γ (греческая буква «гамма») — так называемый температурный коэффициент или коэффициент Вант-Гоффа, принимает значения от 2 до 4.

Для каждой конкретной реакции температурный коэффициент определяется опытным путем. Он показывает, во сколько именно раз возрастает скорость данной химической реакции (и ее константа скорости) при повышении температуры на каждые 10 градусов.

Правило Вант-Гоффа используется для приближенной оценки изменения константы скорости реакции при повышении или понижении температуры. Более точное соотношение между константой скорости и температурой установил шведский химик Сванте Аррениус:

Чем больше E a конкретной реакции, тем меньше (при данной температуре) будет константа скорости k (и скорость) этой реакции. Повышение Т приводит к увеличению константы скорости, это объясняется тем, что повышение температуры приводит к быстрому увеличению числа «энергичных» молекул, способных преодолевать активационный барьер E a .

Влияние катализатора на скорость реакции

Можно изменить скорость реакции, используя специальные вещества, которые изменяют механизм реакции и направляют ее по энергетически более выгодному пути с меньшей энергией активации.

Катализаторы – это вещества, участвующие в химической реакции и увеличивающие ее скорость, но по окончании реакции остающиеся неизменными качественно и количественно.

Ингибиторы – вещества, замедляющие химические реакции.

Изменение скорости химической реакции или ее направления с помощью катализатора называют катализом .

Похожие статьи

  • Какую говядину лучше варить

    Покупка мяса - это самая существенная часть продовольственного бюджета любой семьи (за исключением вегетарианской). Кто-то предпочитает свинину, кто-то птицу, однако наиболее полезной и питательной считается говядина. Это мясо не самое...

  • Какие социальные сети существуют для общения с друзьями и родственниками

    Сегодня соцсети настолько прочно укоренились в нашей жизни, что состав пятерки самых популярных социальных площадок практически не меняется из года в год. Тем не менее, масштабы проникновения и использования этих соцсетей отличаются в...

  • Обзор самых новых лекарств от рака

    Предлагаю вашему вниманию простые, проверенные временем, средства народной медицины, которые помогут при онкологических заболеваниях .Звездчатка (мокрица). Сок растения, крепкий настой и отвар применяется для местных ванн и примочек при...

  • Самые действенные способы защиты от сглаза, порчи, колдовства, зависти

    Признаками магического нападения могут являться: любые физические, психоэмоциональные отклонения без особой на-то причины. С целью защиты в отражения удара в той же самой магии выработаны довольно мощные приемы, которые отрабатывались не...

  • Что значит "поставить крест"

    О каком кресте говорил Иисус своим ученикам? Куда они должны были следовать со своим крестом? Что такое крестный ход? Что означают выражения: «Креста на тебе нет!» или «Поставить на нем крест!» ВСЕСЛАВЪ (ГЛОБА Игорь Александрович),...

  • К чему снятся венки похоронные в доме

    Сны не могут не поражать своей парадоксальностью. Часто тот или иной негатив, увиденный во сне, на деле оборачивается счастьем и удачей, а позитивные вещи и явления сулят несчастья и разочарования в реальной объективной действительности....