Биссектриса делит противоположную сторону пополам. Биссектриса треугольника - что это такое

Средний уровень

Биссектриса треугольника. Подробная теория с примерами (2019)

Биссектриса треугольника и ее свойства

Знаешь ли ты, что такое середина отрезка? Конечно же знаешь. А центр круга? Тоже. А что такое середина угла? Ты можешь сказать, что такого не бывает. Но почему же, отрезок можно разделить пополам, а угол нельзя? Вполне можно - только не точкой, а…. линией.

Помнишь шутку: биссектриса это крыса, которая бегает по углам и делит угол пополам. Так вот, настоящее определение биссектрисы очень похоже на эту шутку:

Биссектриса треугольника - это отрезок биссектрисы угла треугольника, соединяющий вершину этого угла с точкой на противолежащей стороне.

Когда-то древние астрономы и математики открыли очень много интересных свойств биссектрисы. Эти знания сильно упростили жизнь людей. Стало легче строить, считать расстояния, даже корректировать стрельбу из пушек… Нам же знание этих свойств поможет решить некоторые задания ГИА и ЕГЭ!

Первое знание, которое поможет в этом - биссектриса равнобедренного треугольника.

Кстати, а помнишь ли ты все эти термины? Помнишь чем они отличаются друг от друга? Нет? Не страшно. Сейчас разберемся.

Итак, основание равнобедренного треугольника - это та сторона, которая не равна никакой другой. Посмотри на рисунок, как ты думаешь, какая это сторона? Правильно - это сторона.

Медиана - это линия, проведенная из вершины треугольника и делящая противоположную сторону (это снова) пополам.

Заметь, мы не говорим: «Медиана равнобедренного треугольника». А знаешь почему? Потому что медиана, проведенная из вершины треугольника, делит противоположную сторону пополам в ЛЮБОМ треугольнике.

Ну, а высота - это линия, проведенная из вершины и перпендикулярная основанию. Ты заметил? Мы опять говорим о любом треугольнике, а не только о равнобедренном. Высота в ЛЮБОМ треугольнике всегда перпендикулярна основанию.

Итак, разобрались? Ну почти. Чтобы еще лучше понять и навсегда запомнить что такое биссектриса, медиана и высота, их нужно сравнить друг с другом и понять в чем они похожи и чем они отличаются друг от друга. При этом, чтобы лучше запомнить, лучше описать все «человеческим языком». Потом ты легко будешь оперировать языком математики, но сначала ты этот язык не понимаешь и тебе нужно осмыслить все на своем языке.

Итак, в чем они похожи ? Биссектриса, медиана и высота - все они «выходят» из вершины треугольника и упираются в противоположную сторону и «что-то делают» либо с углом из которого выходят, либо с противоположной стороной. По-моему просто, нет?

А чем они отличаются ?

  • Биссектриса делит угол, из которого выходит, пополам.
  • Медиана делит противоположную сторону пополам.
  • Высота всегда перпендикулярна противоположной стороне.

Теперь все. Понять - легко. А раз понял, можешь запомнить.

Теперь следующий вопрос. Почему же в случае с равнобедренным треугольником биссектриса оказывается одновременно и медианой и высотой?

Можно просто посмотреть на рисунок и убедиться, что медиана разбивает на два абсолютно равных треугольника. Вот и все! Но математики не любят верить своим глазам. Им нужно все доказывать. Страшное слово? Ничего подобного - все просто! Смотри: у и равны стороны и, сторона у них вообще общая и. (- биссектриса!) И вот, получилось, что два треугольника имеют по две равные стороны и угол между ними. Вспоминаем первый признак равенства треугольников (не помнишь, загляни в тему ) и заключаем, что, а значит = и.

Это уже хорошо - значит, оказалась медианой.

А вот что такое?

Посмотрим на картинку - . А у нас получилось, что. Значит, и тоже! Наконец, ура! и.

Показалось ли тебе это доказательство тяжеловатым? Посмотри на картинку - два одинаковых треугольника говорят сами за себя.

В любом случае твердо запомни:

Теперь сложнее: мы посчитаем угол между биссектрисами в любом треугольнике! Не бойся, все не так уж хитро. Смотри на рисунок:

Давай его посчитаем. Ты помнишь, что сумма углов треугольника равна ?

Применим этот потрясающий факт.

С одной стороны, из:

То есть.

Теперь посмотрим на:

Но биссектрисы, биссектрисы же!

Вспомним про:

Теперь через буквы

\angle AOC=90{}^\circ +\frac{\angle B}{2}

Не удивительно ли? Получилось, что угол между биссектрисами двух углов зависит только от третьего угла !

Ну вот, две биссектрисы мы посмотрели. А что, если их три??!! Пересекутся ли они все в одной точке?

Или будет так?

Как ты думаешь? Вот математики думали-думали и доказали:

Правда, здорово?

Хочешь знать, почему же так получается?

Итак…два прямоугольных треугольника: и. У них:

  • Общая гипотенуза.
  • (потому что - биссектриса!)

Значит, - по углу и гипотенузе. Поэтому и соответствующие катеты у этих треугольников - равны! То есть.

Доказали, что точка одинаково (или равно) удалена от сторон угла. С пунктом 1 разобрались. Теперь перейдём к пункту 2.

Почему же верно 2?

И соединим точки и.

Значит, то есть лежит на биссектрисе!

Вот и всё!

Как же все это применить при решении задач? Вот например, в задачах часто бывает такая фраза: «Окружность касается сторон угла….». Ну, и найти нужно что-то.

То быстро соображаешь, что

И можно пользоваться равенством.

3. Три биссектрисы в треугольнике пересекаются в одной точке

Из свойства биссектрисы быть геометрическим местом точек, равноудаленных от сторон угла, вытекает следующее утверждение:

Как именно вытекает? А вот смотри: две-то биссектрисы точно пересекутся, правда?

А третья биссектриса могла бы пройти так:

Но на самом деле-то всё гораздо лучше!

Давай рассмотрим точку пересечения двух биссектрис. Назовём её .

Что мы тут оба раза применяли? Да пункт 1 , конечно же! Если точка лежит на биссектрисе, то она одинаково удалена от сторон угла.

Вот и получилось и.

Но посмотри внимательно на эти два равенства! Ведь из них следует, что и, значит, .

А вот теперь в дело пойдёт пункт 2 : если расстояния до сторон угла равны, то точка лежит на биссектрисе…какого же угла? Ещё раз смотри на картинку:

и - расстояния до сторон угла, и они равны, значит, точка лежит на биссектрисе угла. Третья биссектриса прошла через ту же точку! Все три биссектрисы пересеклись в одной точке! И, как дополнительный подарок -

Радиусы вписанной окружности.

(Для верности посмотри ещё тему ).

Ну вот, теперь ты никогда не забудешь:

Точка пересечения биссектрис треугольника - центр вписанной в неё окружности.

Переходим к следующему свойству… Ух и много же свойств у биссектрисы, правда? И это здорово, потому что, чем больше свойств, тем больше инструментов для решения задач про биссектрису.

4. Биссектриса и параллельность, биссектрисы смежных углов

Тот факт, что биссектриса делит угол пополам, в каких-то случаях приводит к совершенно неожиданным результатам. Вот, например,

Случай 1

Здорово, правда? Давай поймём, почему так.

С одной стороны, - мы же проводим биссектрису!

Но, с другой стороны, - как накрест лежащие углы (вспоминаем тему ).

И теперь выходит, что; выкидываем середину: ! - равнобедренный!

Случай 2

Представь треугольник (или посмотри на картинку)

Давай продолжим сторону за точку. Теперь получилось два угла:

  • - внутренний угол
  • - внешний угол - он же снаружи, верно?

Так вот, а теперь кому-то захотелось провести не одну, а сразу две биссектрисы: и для, и для. Что же получится?

А получится прямоугольный!

Удивительно, но это именно так.

Разбираемся.

Как ты думаешь, чему равна сумма?

Конечно же, - ведь они все вместе составляют такой угол, что получается прямая.

А теперь вспомним, что и -биссектрисы и увидим, что внутри угла находится ровно половина от суммы всех четырех углов: и - - то есть ровно. Можно написать и уравнением:

Итак, невероятно, но факт:

Угол между биссектрисами внутреннего и внешнего угла треугольника равен.

Случай 3

Видишь, что здесь все так же, как и для внутреннего и внешнего углов?

Или ещё раз подумаем, почему так получается?

Снова, как и для смежных углов,

(как соответственные при параллельных основаниях).

И опять, составляют ровно половину от суммы

Вывод: Если в задаче встретились биссектрисы смежных углов или биссектрисы соответственных углов параллелограмма или трапеции, то в этой задаче непременно участвует прямоугольный треугольник, а может даже и целый прямоугольник.

5. Биссектриса и противоположная сторона

Оказывается, биссектриса угла треугольника делит противоположную сторону не как-нибудь, а специальным и очень интересным образом:

То есть:

Удивительный факт, не правда ли?

Сейчас мы этот факт докажем, но приготовься: будет немного сложнее, чем раньше.

Снова - выход в «космос» - дополнительное построение!

Проведём прямую.

Зачем? Сейчас увидим.

Продолжим биссектрису до пересечения с прямой.

Знакомая картинка? Да-да-да, точно так же, как в пункте 4, случай 1 - получается, что (- биссектриса)

Как накрест лежащие

Значит, - это тоже.

А теперь посмотрим на треугольники и.

Что про них можно сказать?

Они…подобны. Ну да, у них и углы равны как вертикальные. Значит, по двум углам.

Теперь имеем право писать отношения соответствующих сторон.

А теперь в коротких обозначениях:

Ой! Что-то напоминает, верно? Не это ли самое мы хотели доказать? Да-да, именно это!

Видишь, как здорово проявил себя «выход в космос» - построение дополнительной прямой - без неё ничего бы не вышло! А так, мы доказали, что

Теперь можешь смело использовать! Разберём ещё одно свойство биссектрис углов треугольника - не пугайся, теперь самое сложное кончилось - будет проще.

Получаем, что

Теорема 1:

Теорема 2:

Теорема 3:

Теорема 4:

Теорема 5:

Теорема 6:

Внутренних углов треугольника называется биссектрисой треугольника.
Под биссектрисой угла треугольника также понимают отрезок между его вершиной и точкой пересечения биссектрисы с противолежащей стороной треугольника.
Теорема 8. Три биссектрисы треугольника пересекаются в одной точке.
Действительно, рассмотрим сначала точку Р пересечения двух биссектрис, например АК 1 и ВК 2 . Эта точка одинаково удалена от сторон АВ и АС, так как она лежит на биссектрисе угла А, и одинаково удалена от сторон АВ и ВС, как принадлежащая биссектрисе угла В. Значит, она одинаково удалена от сторон АС и ВС и тем самым принадлежит третей биссектрисе СК 3 , то есть в точке Р пересекаются все три биссектрисы.
Свойства биссектрис внутреннего и внешнего углов треугольника
Теорема 9 . Биссектриса внутреннего угла треугольника делит противолежащую сторону на части, пропорциональные прилежащим сторонам.
Доказательство. Рассмотрим треугольник АВС и биссектрису его угла В. Проведем через вершину С прямую СМ, параллельную биссектрисе ВК, до пересечения в точке Мпродолжением стороны АВ. Так как ВК – биссектриса угла АВС, то ∠ АВК=∠ КВС. Далее, ∠ АВК=∠ ВМС, как соответственные углы при параллельных прямых, и ∠ КВС=∠ ВСМ, как накрест лежащие углы при параллельных прямых. Отсюда ∠ ВСМ=∠ ВМС, и поэтому треугольник ВМС – равнобедренный, откуда ВС=ВМ. По теореме о параллельных прямых, пересекающих стороны угла, имеем АК:К С=АВ:ВМ=АВ:ВС, что и требовалось доказать.
Теорема 10 Биссектриса внешнего угла В треугольника АВС обладает аналогичным свойством: отрезки AL и CL от вершины А и С до точки L пересечения биссектрисы с продолжением стороны АС пропорциональны сторонам треугольника: AL :CL =AB :BC .
Это свойство доказывается так же, как и предыдущее: на рисунке проведена вспомогательная прямая СМ, параллельная биссектрисе BL . Углы ВМС и ВСМ равны, а значит, и стороны ВМ и ВС треугольника ВМС равны. Из чего приходим к выводу AL:CL=AB:BC.

Теорема d4. (первая формула для биссектрисы): Если в треугольнике ABC отрезок AL является биссектрисой угла A, то AL? = AB·AC - LB·LC.

Доказательство: Пусть M - точка пересечения прямой AL с окружностью, описанной около треугольника ABC (рис. 41). Угол BAM равен углу MAC по условию. Углы BMA и BCA равны как вписанные углы, опирающиеся на одну хорду. Значит, треугольники BAM и LAC подобны по двум углам. Следовательно, AL: AC = AB: AM. Значит, AL · AM = AB · AC <=> AL · (AL + LM) = AB · AC <=> AL? = AB · AC - AL · LM = AB · AC - BL · LC. Что и требовалось доказать. Примечание: теорему об отрезках пересекающихся хорд в круге и о вписанных углах смотри в теме круг и окружность .

Теорема d5. (вторая формула для биссектрисы): В треугольнике ABC со сторонами AB=a, AC=b и углом A, равным 2? и биссектрисой l, имеет место равенство:
l = (2ab / (a+b)) · cos?.

Доказательство: Пусть ABC - данный треугольник, AL - его биссектриса (рис. 42), a=AB, b=AC, l=AL. Тогда S ABC = S ALB + S ALC . Следовательно, absin2? = alsin? + blsin? <=> 2absin?·cos? = (a + b)·lsin? <=> l = 2·(ab / (a+b))· cos?. Теорема доказана.

Геометрия - одна из самых сложных и запутанных наук. В ней то, что кажется на первый взгляд очевидным, очень редко оказывается правильным. Биссектрисы, высоты, медианы, проекции, касательные - огромное количество действительно непростых терминов, запутаться в которых очень легко.

На самом деле при должном желании можно разобраться в теории любой сложности. Когда дело заходит о биссектрисе, медиане и высоте, нужно понимать, что они свойственны не только треугольникам. На первый взгляд это простые линии, но у каждой из них есть свои свойства и функции, знание которых существенно упрощает решение геометрических задач. Итак, что же такое биссектриса треугольника?

Определение

Сам термин "биссектриса" происходит из сочетания латинских слов "два" и "сечь", "резать", что уже косвенно указывает на её свойства. Обычно, когда детей знакомят с этим лучом, им предлагается для запоминания коротенькая фраза: «Биссектриса - это крыса, которая бегает по углам и делит угол пополам». Естественно, такое объяснение не подойдёт для школьников старшего возраста, к тому же у них обычно спрашивают не об угле, а о геометрической фигуре. Так что биссектриса треугольника - это луч, который соединяет вершину треугольника с противоположной стороной, при этом разделяя угол на две равные части. Точка противоположной стороны, в которую приходит биссектриса, для произвольного треугольника выбирается случайным образом.

Базовые функции и свойства

Основных свойств у этого луча немного. Во-первых, из-за того, что биссектриса треугольника делит угол напополам, любая точка, лежащая на ней, будет находиться на равном расстоянии от сторон, образующих вершину. Во-вторых, в каждом треугольнике можно провести три биссектрисы, по числу имеющихся углов (следовательно, в том же четырёхугольнике их будет уже четыре и так далее). Точка, в которой все три луча пересекутся, является центром окружности, вписанной в треугольник.

Свойства усложняются

Немного усложним теорию. Ещё одно интересное свойство: биссектриса угла треугольника делит противолежащую сторону на отрезки, отношение которых равно отношению образующих вершину сторон. На первый взгляд это сложно, но на самом деле всё просто: на предложенном рисунке RL:LQ = PR:PK. Кстати, это свойство получило название "Теорема о биссектрисе" и впервые появилось ещё в работах древнегреческого математика Евклида. Вспомнили его в одном из российских учебников только в первой четверти семнадцатого века.

Ещё чуть сложнее. В четырёхугольнике биссектриса отсекает равнобедренный треугольник. На этом рисунке обозначены все равные углы для медианы AF.

А ещё в четырёхугольниках и трапециях биссектрисы односторонних углов перпендикулярны друг другу. На представленном чертеже угол APB составляет 90 градусов.

В равнобедренном треугольнике

Биссектриса равнобедренного треугольника - гораздо более полезный луч. Она одновременно является не только делителем угла напополам, но и медианой, и высотой.

Медиана - это отрезок, который выходит из какого-то угла и падает на середину противолежащей стороны, разделяя её тем самым на равные части. Высота - это перпендикуляр, опущенный из вершины на противолежащую сторону, именно с её помощью любую задачу можно свести к простой и примитивной теореме Пифагора. В данной ситуации биссектриса треугольника равна корню из разности квадрата гипотенузы и другого катета. Кстати, именно это свойство встречается в геометрических задачах чаще всего.

Для закрепления: в данном треугольнике биссектриса FB является медианой (AB=BC) и высотой (углы FBC и FBA составляют 90 градусов).

В общих чертах

Итак, что же нужно запомнить? Биссектриса треугольника - это луч, который делит его вершину пополам. На пересечении трёх лучей находится центр окружности, вписанной в данный треугольник (единственный минус этого свойства в том, что оно не имеет практической ценности и служит только для грамотного выполнения чертежа). Она же делит противолежащую сторону на отрезки, отношение которых равно отношению сторон, между которыми прошёл этот луч. В четырёхугольнике свойства чуть усложняются, но, признаться, они практически не встречаются в задачах школьного уровня, поэтому обычно не затрагиваются в программе.

Биссектриса равнобедренного треугольника - предел мечтаний любого школьника. Она одновременно является и медианой (то есть делит противолежащую сторону пополам), и высотой (перпендикулярна этой стороне). Решение задач с такой биссектрисой сводится к теореме Пифагора.

Знание базовых функций биссектрисы, а также основных её свойств необходимо для решения геометрических задач как среднего, так и высокого уровня сложности. На самом деле встречается этот луч только в планиметрии, так что нельзя говорить о том, что зазубривание информации о нём позволит справляться со всеми типами заданий.

СВОЙСТВА БИССЕКТРИСЫ

Свойство биссектрисы: В треугольнике биссектриса делит противоположную сторону на отрезки, пропорциональные прилежащим сторонам.

Биссектриса внешнего угла Биссектриса внешнего угла треугольника пересекает продолжение его стороны в точке, расстояния от которой до концов этой стороны пропорциональны соответственно прилежащим сторонам треугольника. C B A D

Формулы длины биссектрисы:

Формула нахождения длин отрезков, на которые биссектриса делит противоположную сторону треугольника

Формула нахождения отношения длин отрезков, на которые биссектриса делится точкой пересечения биссектрис

Задача 1. Одна из биссектрис треугольника делится точкой пересечения биссектрис в отношении 3:2, считая от вершины. Найдите периметр треугольника, если длина стороны треугольника, к которой эта биссектриса проведена, равна 12 см.

Решение Воспользуемся формулой для нахождение отношения длин отрезков, на которые биссектриса делится точкой пересечения биссектрис в треугольнике:   a + c = = 18  P ∆ АВС = a + b + c = b +(a + c) = 12 + 18 = 30. Ответ: P = 30см.

Задача 2 . Биссектрисы BD и CE ∆ ABC пересекаются в точке О. АВ=14, ВС=6, АС=10. Найдите О D .

Решение. Воспользуемся формулой для нахождения длины биссектрисы: Имеем: BD = BD = = По формуле отношения отрезков, на которые биссектриса делится точкой пересечения биссектрис: l = . 2 + 1 = 3 части всего.

это 1 часть  OD = Ответ: OD =

Задачи В ∆ ABC проведены биссектрисы AL и BK . Найдите длину отрезка KL , если AB = 15, AK =7,5, BL = 5. В ∆ ABC проведена биссектриса AD , а через точку D прямая, параллельная AC и пересекающая AB в точке Е. Найдите отношение площадей ∆ ABC и ∆ BDE , если AB = 5, AC = 7. Найдите биссектрисы острых углов прямоугольного треугольника с катетами 24 см и 18см. В прямоугольном треугольнике биссектриса острого угла делит противоположный катет на отрезки длиной 4 и 5 см. Определить площадь треугольника.

5. В равнобедренном треугольнике основание и боковая сторона равны соответственно 5 и 20 см. Найдите биссектрису угла при основании треугольника. 6. Найдите биссектрису прямого угла треугольника, у которого катеты равны a и b . 7. Вычислите длину биссектрисы угла А треугольника ABC с длинам сторон a = 18 см, b =15 см, c = 12 см. 8. В треугольнике ABC длины сторон AB , BC и AC относятся как 2:4:5 соответственно. Найдите, в каком отношении делятся биссектрисы внутренних углов в точке их пересечения.

Ответы: Ответ: Ответ: Ответ: Ответ: Ответ: Ответ: Ответ: Ответ: AP = 6 AP = 10 см. KL = CP =

Сегодня будет очень лёгкий урок. Мы рассмотрим всего один объект — биссектрису угла — и докажем важнейшее её свойство, которое очень пригодится нам в будущем.

Только не надо расслабляться: иногда ученики, желающие получить высокий балл на том же ОГЭ или ЕГЭ, на первом занятии даже не могут точно сформулировать определение биссектрисы.

И вместо того, чтобы заниматься действительно интересными задачами, мы тратим время на такие простые вещи. Поэтому читайте, смотрите — и берите на вооружение.:)

Для начала немного странный вопрос: что такое угол? Правильно: угол — это просто два луча, выходящих из одной точки. Например:


Примеры углов: острый, тупой и прямой

Как видно из картинки, углы могут быть острыми, тупыми, прямыми — это сейчас неважно. Часто для удобства на каждом луче отмечают дополнительную точку и говорят, мол, перед нами угол $AOB$ (записывается как $\angle AOB$).

Капитан очевидность как бы намекает, что помимо лучей $OA$ и $OB$ из точки $O$ всегда можно провести ещё кучу лучей. Но среди них будет один особенный — его-то и называют биссектрисой.

Определение. Биссектриса угла — это луч, который выходит из вершины этого угла и делит угол пополам.

Для приведённых выше углов биссектрисы будут выглядеть так:


Примеры биссектрис для острого, тупого и прямого угла

Поскольку на реальных чертежах далеко не всегда очевидно, что некий луч (в нашем случае это луч $OM$) разбивает исходный угол на два равных, в геометрии принято помечать равные углы одинаковым количеством дуг (у нас на чертеже это 1 дуга для острого угла, две — для тупого, три — для прямого).

Хорошо, с определением разобрались. Теперь нужно понять, какие свойства есть у биссектрисы.

Основное свойство биссектрисы угла

На самом деле у биссектрисы куча свойств. И мы обязательно рассмотрим их в следующем уроке. Но есть одна фишка, которую нужно понять прямо сейчас:

Теорема. Биссектриса угла — это геометрическое место точек, равноудалённых от сторон данного угла.

В переводе с математического на русский это означает сразу два факта:

  1. Всякая точка, лежащая на биссектрисе некого угла, находится на одинаковом расстоянии от сторон этого угла.
  2. И наоборот: если точка лежит на одинаковом расстоянии от сторон данного угла, то она гарантированно лежит на биссектрисе этого угла.

Прежде чем доказывать эти утверждения, давайте уточним один момент: а что, собственно, называется расстоянием от точки до стороны угла? Здесь нам поможет старое-доброе определение расстояния от точки до прямой:

Определение. Расстояние от точки до прямой — это длина перпендикуляра, проведённого из данной точки к этой прямой.

Например, рассмотрим прямую $l$ и точку $A$, не лежащую на этой прямой. Проведём перпендикуляр $AH$, где $H\in l$. Тогда длина этого перпендикуляра и будет расстоянием от точки $A$ до прямой $l$.

Графическое представление расстояния от точки до прямой

Поскольку угол — это просто два луча, а каждый луч — это кусок прямой, легко определить расстояние от точки до сторон угла. Это просто два перпендикуляра:


Определяем расстояние от точки до сторон угла

Вот и всё! Теперь мы знаем, что такое расстояние и что такое биссектриса. Поэтому можно доказывать основное свойство.

Как и обещал, разобьём доказательство на две части:

1. Расстояния от точки на биссектрисе до сторон угла одинаковы

Рассмотрим произвольный угол с вершиной $O$ и биссектрисой $OM$:

Докажем, что эта самая точка $M$ находится на одинаковом расстоянии от сторон угла.

Доказательство. Проведём из точки $M$ перпендикуляры к сторонам угла. Назовём их $M{{H}_{1}}$ и $M{{H}_{2}}$:

Провели перпендикуляры к сторонам угла

Получили два прямоугольных треугольника: $\vartriangle OM{{H}_{1}}$ и $\vartriangle OM{{H}_{2}}$. У них общая гипотенуза $OM$ и равные углы:

  1. $\angle MO{{H}_{1}}=\angle MO{{H}_{2}}$ по условию (поскольку $OM$ — биссектриса);
  2. $\angle M{{H}_{1}}O=\angle M{{H}_{2}}O=90{}^\circ $ по построению;
  3. $\angle OM{{H}_{1}}=\angle OM{{H}_{2}}=90{}^\circ -\angle MO{{H}_{1}}$, поскольку сумма острых углов прямоугольного треугольника всегда равна 90 градусов.

Следовательно, треугольники равны по стороне и двум прилежащим углам (см. признаки равенства треугольников). Поэтому, в частности, $M{{H}_{2}}=M{{H}_{1}}$, т.е. расстояния от точки $O$ до сторон угла действительно равны. Что и требовалось доказать.:)

2. Если расстояния равны, то точка лежит на биссектрисе

Теперь обратная ситуация. Пусть дан угол $O$ и точка $M$, равноудалённая от сторон этого угла:

Докажем, что луч $OM$ — биссектриса, т.е. $\angle MO{{H}_{1}}=\angle MO{{H}_{2}}$.

Доказательство. Для начала проведём этот самый луч $OM$, иначе доказывать будет нечего:

Провели луч $OM$ внутри угла

Снова получили два прямоугольных треугольника: $\vartriangle OM{{H}_{1}}$ и $\vartriangle OM{{H}_{2}}$. Очевидно, что они равны, поскольку:

  1. Гипотенуза $OM$ — общая;
  2. Катеты $M{{H}_{1}}=M{{H}_{2}}$ по условию (ведь точка $M$ равноудалена от сторон угла);
  3. Оставшиеся катеты тоже равны, т.к. по теореме Пифагора $OH_{1}^{2}=OH_{2}^{2}=O{{M}^{2}}-MH_{1}^{2}$.

Следовательно, треугольники $\vartriangle OM{{H}_{1}}$ и $\vartriangle OM{{H}_{2}}$ по трём сторонам. В частности, равны их углы: $\angle MO{{H}_{1}}=\angle MO{{H}_{2}}$. А это как раз и означает, что $OM$ — биссектриса.

В заключение доказательства отметим красными дугами образовавшиеся равные углы:

Биссектриса разбила угол $\angle {{H}_{1}}O{{H}_{2}}$ на два равных

Как видите, ничего сложного. Мы доказали, что биссектриса угла — это геометрическое место точек, равноудалённых до сторон этого угла.:)

Теперь, когда мы более-менее определились с терминологией, пора переходить на новый уровень. В следующем уроке мы разберём более сложные свойства биссектрисы и научимся применять их для решения настоящих задач.

Похожие статьи

  • Золотые кони хана батыя - легендарные сокровища, точное местонахождение

    из Энциклопедии чудес, загадок и тайн ЗОЛОТЫЕ КОНИ ХАНА БАТЫЯ - легендарные сокровища, точное местонахождение которых до сих пор неизвестно. История коней примерно такова: После того, как хан Батый разорил Рязань и Киев, он...

  • Какую говядину лучше варить

    Покупка мяса - это самая существенная часть продовольственного бюджета любой семьи (за исключением вегетарианской). Кто-то предпочитает свинину, кто-то птицу, однако наиболее полезной и питательной считается говядина. Это мясо не самое...

  • Какие социальные сети существуют для общения с друзьями и родственниками

    Сегодня соцсети настолько прочно укоренились в нашей жизни, что состав пятерки самых популярных социальных площадок практически не меняется из года в год. Тем не менее, масштабы проникновения и использования этих соцсетей отличаются в...

  • Обзор самых новых лекарств от рака

    Предлагаю вашему вниманию простые, проверенные временем, средства народной медицины, которые помогут при онкологических заболеваниях .Звездчатка (мокрица). Сок растения, крепкий настой и отвар применяется для местных ванн и примочек при...

  • Самые действенные способы защиты от сглаза, порчи, колдовства, зависти

    Признаками магического нападения могут являться: любые физические, психоэмоциональные отклонения без особой на-то причины. С целью защиты в отражения удара в той же самой магии выработаны довольно мощные приемы, которые отрабатывались не...

  • Что значит "поставить крест"

    О каком кресте говорил Иисус своим ученикам? Куда они должны были следовать со своим крестом? Что такое крестный ход? Что означают выражения: «Креста на тебе нет!» или «Поставить на нем крест!» ВСЕСЛАВЪ (ГЛОБА Игорь Александрович),...