Формула суммы геометрической прогрессии примеры. Будьте всегда в настроении

Инструкция

10, 30, 90, 270...

Требуется найти знаменатель геометрической прогрессии.
Решение:

1 вариант. Возьмем произвольный член прогрессии (например, 90) и разделим его на предыдущий (30): 90/30=3.

Если известна сумма нескольких членов геометрической прогрессии или сумма всех членов убывающей геометрической прогрессии, то для нахождения знаменателя прогрессии воспользуйтесь соответствующими формулами:
Sn = b1*(1-q^n)/(1-q), где Sn – сумма n первых членов геометрической прогрессии и
S = b1/(1-q), где S – сумма бесконечно убывающей геометрической прогрессии (сумма всех членов прогрессии со знаменателем меньшим единицы).
Пример.

Первый член убывающей геометрической прогрессии равен единице, а сумма всех ее членов равна двум.

Требуется определить знаменатель этой прогрессии.
Решение:

Подставьте данные из задачи в формулу. Получится:
2=1/(1-q), откуда – q=1/2.

Прогрессия представляет собой последовательность чисел. В геометрической прогрессии каждый последующий член получается умножением предыдущего на некоторое число q, называемое знаменателем прогрессии.

Инструкция

Если известно два соседних члена геометрической b(n+1) и b(n), чтобы получить знаменатель, надо число с большим разделить на предшествующее ему: q=b(n+1)/b(n). Это следует из определения прогрессии и ее знаменателя. Важным условием является неравенство нулю первого члена и знаменателя прогрессии, иначе считается неопределенной.

Так, между членами прогрессии устанавливаются следующие соотношения: b2=b1 q, b3=b2 q, … , b(n)=b(n-1) q. По формуле b(n)=b1 q^(n-1) может быть вычислен любой член геометрической прогрессии, в которой известен знаменатель q и член b1. Также каждый из прогрессии по модулю равен среднему своих соседних членов: |b(n)|=√, отсюда прогрессия и получила свое .

Аналогом геометрической прогрессии является простейшая показательная функция y=a^x, где x стоит в показателе степени, a – некоторое число. В этом случае знаменатель прогрессии совпадает с первым членом и равен числу a. Под значением функции y можно понимать n-й член прогрессии, если аргумент x принять за натуральное число n (счетчик).

Существует для суммы первых n членов геометрической прогрессии: S(n)=b1 (1-q^n)/(1-q). Данная формула справедлива при q≠1. Если q=1, то сумма первых n членов вычисляется формулой S(n)=n b1. Кстати, прогрессия будет называться возрастающей при q большем единицы и положительном b1. При знаменателе прогрессии, по модулю не превышающем единицы, прогрессия будет называться убывающей.

Частный случай геометрической прогрессии – бесконечно убывающая геометрическая прогрессия (б.у.г.п.). Дело в том, что члены убывающей геометрической прогрессии будут раз за разом уменьшаться, но никогда не достигнут нуля. Несмотря на это, можно найти сумму всех членов такой прогрессии. Она определяется формулой S=b1/(1-q). Общее количество членов n бесконечно.

Чтобы наглядно представить, как можно сложить бесконечное количество чисел и не получить при этом бесконечность, испеките торт. Отрежьте половину этого . Затем отрежьте 1/2 от половины, и так далее. Кусочки, которые у вас будут получаться, являют собой не что иное, как члены бесконечно убывающей геометрической прогрессии со знаменателем 1/2. Если сложить все эти кусочки, вы получите исходный торт.

Задачи по геометрии - это особая разновидность упражнений, требующая пространственного мышления. Если у вас не получается решить геометрическую задачу , попробуйте следовать нижеприведенным правилам.

Инструкция

Прочитайте очень внимательно условие задачи, если что-то не запомнили или не поняли, перечитайте еще раз.

Постарайтесь определить, к какому виду геометрических задач она , так, например: вычислительные, когда нужно узнать какую-нибудь величину, задачи на , требующие логической цепочки рассуждений, задачи на построение при помощи циркуля и линейки. Еще задачи смешанного типа. Когда вы выяснили тип задачи, постарайтесь рассуждать логически.

Примените необходимую теорему для данной задачи, если же есть сомнения или вообще отсутствуют варианты, то постарайтесь вспомнить теорию, которую вы проходили по соответствующей теме.

Оформите решение задачи также на черновике. Попытайтесь применить известные способы проверки верности вашего решения.

Оформите решение задачи аккуратно в тетради, без помарок и зачеркиваний, а главное - .Возможно, на решение первых геометрических задач уйдет сил и времени. Однако, как только вы освоите этот процесс - начнете щелкать задачи по , как орешки, получая от этого удовольствие!

Геометрическая прогрессия - это такая последовательность чисел b1, b2, b3, ... , b(n-1), b(n), что b2=b1*q, b3=b2*q, ... , b(n)=b(n-1)*q, b1≠0, q≠0. Иными словами, каждый член прогрессии получается из предыдущего умножением его на некоторый ненулевой знаменатель прогрессии q.

Инструкция

Задачи на прогрессии чаще всего решаются составлением и последующим системы относительно первого члена прогрессии b1 и знаменателя прогрессии q. Для составления уравнений полезно помнить некоторые формулы.

Как выразить n-й член прогрессии через первый член прогрессии и знаменатель прогрессии:b(n)=b1*q^(n-1).

Рассмотрим отдельно случай |q|<1. Если знаменатель прогрессии по модулю меньше единицы, имеем бесконечно убывающую геометрическую . Сумма первых n членов бесконечно убывающей геометрической прогрессии ищется так же, как и для неубывающей геометрической прогрессии. Однако в случае бесконечно убывающей геометрической прогрессии можно найти также сумму всех членов этой прогрессии, поскольку при бесконечном n будет бесконечно уменьшаться значение b(n), и сумма всех членов будет стремиться к определенному пределу. Итак, сумма всех членов бесконечно убывающей геометрической прогрессии

Это число называется знаменателем геометрической прогрессии, т. е. каждый член отличается от предыдущего в q раз. (Будем считать, что q ≠ 1, иначе все уж слишком тривиально). Нетрудно видеть, что общая формула n -го члена геометрической прогрессии b n = b 1 q n – 1 ; члены с номерами b n и b m отличаются в q n – m раз.

Уже в Древнем Египте знали не только арифметическую, но и геометрическую прогрессию. Вот, например, задача из папируса Райнда: «У семи лиц по семи кошек; каждая кошка съедает по семи мышей, каждая мышь съедает по семи колосьев, из каждого колоса может вырасти по семь мер ячменя. Как велики числа этого ряда и их сумма?»


Рис. 1. Древнеегипетская задача о геометрической прогресии

Эта задача много раз с разными вариациями повторялась и у других народов в другие времена. Например, в написанной в XIII в. «Книге об абаке» Леонардо Пизанского (Фибоначчи) есть задача, в которой фигурируют 7 старух, направляющихся в Рим (очевидно, паломниц), у каждой из которых 7 мулов, на каждом из которых по 7 мешков, в каждом из которых по 7 хлебов, в каждом из которых по 7 ножей, каждый из которых в 7 ножнах. В задаче спрашивается, сколько всего предметов.

Сумма первых n членов геометрической прогрессии S n = b 1 (q n – 1) / (q – 1) . Эту формулу можно доказать, например, так: S n = b 1 + b 1 q + b 1 q 2 + b 1 q 3 + ... + b 1 q n – 1 .

Добавим к S n число b 1 q n и получим:

S n + b 1 q n = b 1 + b 1 q + b 1 q 2 + b 1 q 3 + ... + b 1 q n – 1 + b 1 q n = b 1 + (b 1 + b 1 q + b 1 q 2 + b 1 q 3 + ... + b 1 q n –1) q = b 1 + S n q .

Отсюда S n (q – 1) = b 1 (q n – 1) , и мы получаем необходимую формулу.

Уже на одной из глиняных табличек Древнего Вавилона, относящейся к VI в. до н. э., содержится сумма 1 + 2 + 2 2 + 2 3 + ... + 2 9 = 2 10 – 1. Правда, как и в ряде других случаев мы не знаем, откуда этот факт был известен вавилонянам.

Быстрое возрастание геометрической прогрессии в ряде культур, – в частности, в индийской, – неоднократно используется как наглядный символ необозримости мироздания. В известной легенде о появлении шахмат властелин предоставляет их изобретателю возможность самому выбрать награду, и тот просит такое количество пшеничных зерен, которое получится, если одно положить на первую клетку шахматной доски, два – на вторую, четыре – на третью, восемь – на четвертую и т. д., всякий раз число увеличивается вдвое. Владыка думал, что речь идет, самое большое, о нескольких мешках, но он просчитался. Нетрудно видеть, что за все 64 клетки шахматной доски изобретатель должен был бы получить (2 64 – 1) зерно, что выражается 20-значным числом; даже если засевать всю поверхность Земли, потребовалось бы не менее 8 лет, чтобы собрать необходимое количество зерен. Эту легенду иногда интерпретируют как указание на практически неограниченные возможности, скрытые в шахматной игре.

То, что это число действительно 20-значное, увидеть нетрудно:

2 64 = 2 4 ∙ (2 10) 6 = 16 ∙ 1024 6 ≈ 16 ∙ 1000 6 = 1,6∙10 19 (более точный расчет дает 1,84∙10 19). А вот интересно, сможете ли вы узнать, какой цифрой оканчивается данное число?

Геометрическая прогрессия бывает возрастающей, если знаменатель по модулю больше 1, или убывающей, если он меньше единицы. В последнем случае число q n при достаточно больших n может стать сколь угодно малым. В то время как возрастающая геометрическая прогрессия возрастает неожиданно быстро, убывающая столь же быстро убывает.

Чем больше n , тем слабее число q n отличается от нуля, и тем ближе сумма n членов геометрической прогрессии S n = b 1 (1 – q n ) / (1 – q ) к числу S = b 1 / (1 – q ) . (Так рассуждал, например, Ф. Виет). Число S называется суммой бесконечно убывающей геометрической прогрессии. Тем не менее, долгие века вопрос о том, какой смысл имеет суммирование ВСЕЙ геометрической прогрессии, с ее бесконечным числом членов, не был достаточно ясен математикам.

Убывающую геометрическую прогрессию можно видеть, например, в апориях Зенона «Деление пополам» и «Ахиллес и черепаха». В первом случае наглядно показывается, что вся дорога (предположим, длины 1) является суммой бесконечного числа отрезков 1/2, 1/4, 1/8 и т. д. Так оно, конечно, и есть с точки зрения представлений о конечной сумме бесконечной геометрической прогрессии. И все же – как такое может быть?

Рис. 2. Прогрессия с коэффициентом 1/2

В апории про Ахиллеса ситуация чуть более сложная, т. к. здесь знаменатель прогрессии равен не 1/2, а какому-то другому числу. Пусть, например, Ахиллес бежит со скоростью v , черепаха движется со скоростью u , а первоначальное расстояние между ними равно l . Это расстояние Ахиллес пробежит за время l /v , черепаха за это время сдвинется на расстояние lu /v . Когда Ахиллес пробежит и этот отрезок, дистанция между ним и черепахой станет равной l (u /v ) 2 , и т. д. Получается, что догнать черепаху – значит найти сумму бесконечно убывающей геометрической прогрессии с первым членом l и знаменателем u /v . Эта сумма – отрезок, который в итоге пробежит Ахиллес до места встречи с черепахой – равен l / (1 – u /v ) = lv / (v – u ) . Но, опять-таки, как надо интерпретировать этот результат и почему он вообще имеет какой-то смысл, долгое время было не очень ясно.

Рис. 3. Геометрическая прогрессия с коэффициентом 2/3

Сумму геометрической прогрессии использовал Архимед при определении площади сегмента параболы. Пусть данный сегмент параболы отграничен хордой AB и пусть в точке D параболы касательная параллельна AB . Пусть C – середина AB , E – середина AC , F – середина CB . Проведем прямые, параллельные DC , через точки A , E , F , B ; пусть касательную, проведенную в точке D , эти прямые пересекают в точках K , L , M , N . Проведем также отрезки AD и DB . Пусть прямая EL пересекает прямую AD в точке G , а параболу в точке H ; прямая FM пересекает прямую DB в точке Q , а параболу в точке R . Согласно общей теории конических сечений, DC – диаметр параболы (то есть отрезок, параллельный ее оси); он и касательная в точке D могут служить осями координат x и y , в которых уравнение параболы записывается как y 2 = 2px (x – расстояние от D до какой-либо точки данного диаметра, y – длина параллельного данной касательной отрезка от этой точки диаметра до некоторой точки на самой параболе).

В силу уравнения параболы, DL 2 = 2 ∙ p ∙ LH , DK 2 = 2 ∙ p ∙ KA , а поскольку DK = 2DL , то KA = 4LH . Т. к. KA = 2LG , LH = HG . Площадь сегмента ADB параболы равна площади треугольника ΔADB и площадям сегментов AHD и DRB , вместе взятых. В свою очередь, площадь сегмента AHD аналогичным образом равна площади треугольника AHD и оставшихся сегментов AH и HD , с каждым из которых можно провести ту же операцию – разбить на треугольник (Δ) и два оставшихся сегмента (), и т. д.:

Площадь треугольника ΔAHD равна половине площади треугольника ΔALD (у них общее основание AD , а высоты отличаются в 2 раза), которая, в свою очередь, равна половине площади треугольника ΔAKD , а значит, и половине площади треугольника ΔACD . Таким образом, площадь треугольника ΔAHD равна четверти площади треугольника ΔACD . Аналогично, площадь треугольника ΔDRB равна четверти площади треугольника ΔDFB . Итак, площади треугольников ΔAHD и ΔDRB , вместе взятые, равны четверти площади треугольника ΔADB . Повторение этой операции в применении к сегментам AH , HD , DR и RB выделит и из них треугольники, площадь которых, вместе взятых, будет в 4 раза меньше, чем площадь треугольников ΔAHD и ΔDRB , вместе взятых, а значит, в 16 раз меньше, чем площади треугольника ΔADB . И так далее:

Таким образом, Архимед доказал, что «всякий сегмент, заключенный между прямой и параболой, составляет четыре трети треугольника, имеющего с ним одно и то же основание и равную высоту».

Геометрическая прогрессия - это числовая последовательность, первый член которой отличен от нуля, а каждый следующий член, равен предыдущему члену, умноженному на одно и то же не равное нулю число.

Понятие геометрической прогрессии

Геометрическая прогрессия обозначается b1,b2,b3, …, bn, … .

Отношение любого члена геометрической погрешности к её предыдущему члену равно одному и тому же числу, то есть b2/b1 = b3/b2 = b4/b3 = … = bn/b(n-1) = b(n+1)/bn = … . Это следует непосредственно из определения арифметической прогрессии. Это число называют знаменателем геометрической прогрессии. Обычно знаменатель геометрической прогрессии обозначают буквой q.

Сумма бесконечной геометрической прогрессии при |q|<1

Одним из способов задания геометрической прогрессии является задание её первого члена b1 и знаменателя геометрической погрешности q. Например, b1=4, q=-2. Эти два условия задают геометрическую прогрессию 4, -8, 16, -32, … .

Если q>0 (q не равно 1), то прогрессия является монотонной последовательностью. Например, последовательность, 2, 4,8,16,32, … является монотонно возрастающей последовательностью (b1=2, q=2).

Если в геометрической погрешности знаменатель q=1, то все члены геометрической прогрессии будут равны между собой. В таких случаях говорят, что прогрессия является постоянной последовательностью.

Для того, чтобы числовая последовательность (bn) являлась геометрической прогрессией необходимо, чтобы каждый её член, начиная со второго, являлся средним геометрическим соседних членов. То есть необходимо выполнение следующего уравнения
(b(n+1))^2 = bn * b(n+2),для любого n>0, где n принадлежит множеству натуральных чисел N.

Теперь положим (Xn) - геометрическая прогрессия. Знаменатель геометрической прогрессии q, причем |q|∞).
Если теперь за S обозначить сумму бесконечно геометрической прогрессии, тогда будет иметь место следующая формула:
S=x1/(1-q).

Рассмотрим простой пример:

Найти сумму бесконечной геометрической прогрессии 2, -2/3, 2/9, - 2/27, … .

Для нахождения S воспользуемся формулой суммы бесконечно арифметической прогрессии. |-1/3| < 1. x1 = 2. S=2/(1-(-1/3)) = 3/2.

Рассмотрим некоторый ряд.

7 28 112 448 1792...

Совершенно ясно видно, что значение любого его элемента больше предыдущего ровно в четыре раза. Значит, данный ряд является прогрессией.

Геометрической прогрессиейименуется бесконечная последовательность чисел, главной особенностью которой является то, что следующее число получается из предыдущего посредством умножения на какое-то определенное число. Это выражается следующей формулой.

a z +1 =a z ·q, где z - номер выбранного элемента.

Соответственно, z ∈ N.

Период, когда в школе изучается геометрическая прогрессия - 9 класс. Примеры помогут разобраться в понятии:

0.25 0.125 0.0625...

Исходя из этой формулы, знаменатель прогрессии возможно найти следующим образом:

Ни q, ни b z не могут равняться нулю. Так же каждый из элементов прогрессии не должен равняться нулю.

Соответственно, чтобы узнать следующее число ряда, нужно умножить последнее на q.

Чтобы задать данную прогрессию, необходимо указать первый ее элемент и знаменатель. После этого возможно нахождение любого из последующих членов и их суммы.

Разновидности

В зависимости от q и a 1, данная прогрессия разделяется на несколько видов:

  • Если и a 1 , и q больше единицы, то такая последовательность - возрастающая с каждым следующим элементом геометрическая прогрессия. Пример таковой представлен далее.

Пример: a 1 =3, q=2 - оба параметра больше единицы.

Тогда числовая последовательность может быть записана так:

3 6 12 24 48 ...

  • Если |q| меньше единицы, то есть, умножение на него эквивалентно делению, то прогрессия с подобными условиями - убывающая геометрическая прогрессия. Пример таковой представлен далее.

Пример: a 1 =6, q=1/3 - a 1 больше единицы, q - меньше.

Тогда числовую последовательность можно записать таким образом:

6 2 2/3 ... - любой элемент больше элемента, следующего за ним, в 3 раза.

  • Знакопеременная. Если q<0, то знаки у чисел последовательности постоянно чередуются вне зависимости от a 1 , а элементы ни возрастают, ни убывают.

Пример: a 1 = -3 , q = -2 - оба параметра меньше нуля.

Тогда числовую последовательность можно записать так:

3, 6, -12, 24,...

Формулы

Для удобного использования геометрических прогрессий существует множество формул:

  • Формула z-го члена. Позволяет рассчитать элемент, стоящий под конкретным номером без расчета предыдущих чисел.

Пример: q = 3, a 1 = 4. Требуется посчитать четвертый элемент прогрессии.

Решение: a 4 = 4 · 3 4-1 = 4 · 3 3 = 4 · 27 = 108.

  • Сумма первых элементов, чье количество равно z . Позволяет рассчитать сумму всех элементов последовательности до a z включительно.

Так как (1- q ) стоит в знаменателе, то (1 - q) ≠ 0, следовательно, q не равно 1.

Замечание: если бы q=1, то прогрессия представляла бы собой ряд из бесконечно повторяющегося числа.

Сумма геометрической прогрессии, примеры: a 1 = 2, q = -2. Посчитать S 5 .

Решение: S 5 = 22 - расчет по формуле.

  • Сумма, если | q | < 1 и если z стремится к бесконечности.

Пример: a 1 = 2 , q = 0.5. Найти сумму.

Решение: S z = 2 · = 4

S z = 2 + 1 + 0.5 + 0.25 + 0.125 + 0.0625 = 3.9375 4

Некоторые свойства:

  • Характеристическое свойство. Если следующее условие выполняется для любого z , то заданный числовой ряд - геометрическая прогрессия:

a z 2 = a z -1 · a z+1

  • Так же квадрат любого числа геометрической прогрессии находится при помощи сложения квадратов двух других любых чисел в заданном ряду, если они равноудалены от этого элемента.

a z 2 = a z - t 2 + a z + t 2 , где t - расстояние между этими числами.

  • Элементы различаются в q раз.
  • Логарифмы элементов прогрессии так же образуют прогрессию, но уже арифметическую, то есть каждый из них больше предыдущего на определенное число.

Примеры некоторых классических задач

Чтобы лучше понять, что такое геометрическая прогрессия, примеры с решением для 9 класса могут помочь.

  • Условия: a 1 = 3, a 3 = 48. Найти q .

Решение: каждый последующий элемент больше предыдущего в q раз. Необходимо выразить одни элементы через другие с помощью знаменателя.

Следовательно, a 3 = q 2 · a 1

При подстановке q = 4

  • Условия: a 2 = 6, a 3 = 12. Рассчитать S 6 .

Решение: Для этого достаточно найти q, первый элемент и подставить в формулу.

a 3 = q · a 2 , следовательно, q = 2

a 2 = q · a 1 , поэтому a 1 = 3

S 6 = 189

  • · a 1 = 10, q = -2. Найти четвертый элемент прогрессии.

Решение: для этого достаточно выразить четвертый элемент через первый и через знаменатель.

a 4 = q 3 · a 1 = -80

Пример применения:

  • Клиент банка совершил вклад на сумму 10000 рублей, по условиям которого каждый год клиенту к основной сумме будут прибавляться 6% от нее же. Сколько средств будет на счету через 4 года?

Решение: Изначальная сумма равна 10 тысячам рублей. Значит, через год после вложения на счету будет сумма, равная 10000 + 10000· 0.06 = 10000 · 1.06

Соответственно, сумма на счете еще через один год будет выражаться следующим образом:

(10000 · 1.06) · 0.06 + 10000 · 1.06 = 1.06 · 1.06 · 10000

То есть с каждым годом сумма увеличивается в 1.06 раз. Значит, чтобы найти количество средств на счете через 4 года, достаточно найти четвертый элемент прогрессии, которая задана первым элементом, равным 10 тысячам, и знаменателем, равным 1.06.

S = 1.06·1.06·1.06·1.06·10000 = 12625

Примеры задач на вычисление суммы:

В различных задачах используется геометрическая прогрессия. Пример на нахождение суммы может быть задан следующим образом:

a 1 = 4, q = 2, рассчитать S 5 .

Решение: все необходимые для расчета данные известны, нужно просто подставить их в формулу.

S 5 = 124

  • a 2 = 6, a 3 = 18. Рассчитать сумму первых шести элементов.

Решение:

В геом. прогрессии каждый следующий элемент больше предыдущего в q раз, то есть для вычисления суммы необходимо знать элемент a 1 и знаменатель q .

a 2 · q = a 3

q = 3

Аналогичным образом требуется найти a 1 , зная a 2 и q .

a 1 · q = a 2

a 1 = 2

S 6 = 728.

Урок и презентация на тему: "Числовые последовательности. Геометрическая прогрессия"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 9 класса
Степени и корни Функции и графики

Ребята, сегодня мы познакомимся с еще одним видом прогрессии.
Тема сегодняшнего занятия - геометрическая прогрессия.

Геометрическая прогрессия

Определение. Числовая последовательность, в которой каждый член, начиная со второго, равен произведению предыдущего и некоторого фиксированного числа, называется геометрической прогрессией.
Зададим нашу последовательность рекуррентно: $b_{1}=b$, $b_{n}=b_{n-1}*q$,
где b и q – определенные заданные числа. Число q называется знаменателем прогрессии.

Пример. 1,2,4,8,16… Геометрическая прогрессия, у которой первый член равен единице, а $q=2$.

Пример. 8,8,8,8… Геометрическая прогрессия, у которой первый член равен восьми,
а $q=1$.

Пример. 3,-3,3,-3,3… Геометрическая прогрессия, у которой первый член равен трем,
а $q=-1$.

Геометрическая прогрессия обладает свойствами монотонности.
Если $b_{1}>0$, $q>1$,
то последовательность возрастающая.
Если $b_{1}>0$, $0 Последовательность принято обозначать в виде: $b_{1}, b_{2}, b_{3}, ..., b_{n}, ...$.

Также как и в арифметической прогрессии, если в геометрической прогрессии количество элементов конечно, то прогрессия называется конечной геометрической прогрессией .

$b_{1}, b_{2}, b_{3}, ..., b_{n-2}, b_{n-1}, b_{n}$.
Отметим, если последовательность является геометрической прогрессией, то и последовательность квадратов членов, также является геометрической прогрессией. У второй последовательность первый член равен $b_{1}^2$, а знаменатель равен $q^2$.

Формула n-ого члена геометрической прогрессии

Геометрическую прогрессию можно задавать и в аналитической форме. Давайте посмотрим, как это сделать:
$b_{1}=b_{1}$.
$b_{2}=b_{1}*q$.
$b_{3}=b_{2}*q=b_{1}*q*q=b_{1}*q^2$.
$b_{4}=b_{3}*q=b_{1}*q^3$.
$b_{5}=b_{4}*q=b_{1}*q^4$.
Мы легко замечаем закономерность: $b_{n}=b_{1}*q^{n-1}$.
Наша формула называется "формулой n-ого члена геометрической прогрессии".

Вернемся к нашим примерам.

Пример. 1,2,4,8,16… Геометрическая прогрессия, у которой первый член равен единице,
а $q=2$.
$b_{n}=1*2^{n}=2^{n-1}$.

Пример. 16,8,4,2,1,1/2… Геометрическая прогрессия, у которой первый член равен шестнадцати, а $q=\frac{1}{2}$.
$b_{n}=16*(\frac{1}{2})^{n-1}$.

Пример. 8,8,8,8… Геометрическая прогрессия, у которой первый член равен восьми, а $q=1$.
$b_{n}=8*1^{n-1}=8$.

Пример. 3,-3,3,-3,3… Геометрическая прогрессия, у которой первый член равен трем, а $q=-1$.
$b_{n}=3*(-1)^{n-1}$.

Пример. Дана геометрическая прогрессия $b_{1}, b_{2}, …, b_{n}, … $.
а) Известно,что $b_{1}=6, q=3$. Найти $b_{5}$.
б) Известно,что $b_{1}=6, q=2, b_{n}=768$. Найти n.
в) Известно,что $q=-2, b_{6}=96$. Найти $b_{1}$.
г) Известно,что $b_{1}=-2, b_{12}=4096$. Найти q.

Решение.
а) $b_{5}=b_{1}*q^4=6*3^4=486$.
б) $b_n=b_1*q^{n-1}=6*2^{n-1}=768$.
$2^{n-1}=\frac{768}{6}=128$,так как $2^7=128 => n-1=7; n=8$.
в) $b_{6}=b_{1}*q^5=b_{1}*(-2)^5=-32*b_{1}=96 => b_{1}=-3$.
г) $b_{12}=b_{1}*q^{11}=-2*q^{11}=4096 => q^{11}=-2048 => q=-2$.

Пример. Разность между седьмым и пятым членами геометрической прогрессии равны 192, сумма пятого и шестого члена прогрессии равна 192. Найти десятый член этой прогрессии.

Решение.
Нам известно, что: $b_{7}-b_{5}=192$ и $b_{5}+b_{6}=192$.
Мы так же знаем: $b_{5}=b_{1}*q^4$; $b_{6}=b_{1}*q^5$; $b_{7}=b_{1}*q^6$.
Тогда:
$b_{1}*q^6-b_{1}*q^4=192$.
$b_{1}*q^4+b_{1}*q^5=192$.
Получили систему уравнений:
$\begin{cases}b_{1}*q^4(q^2-1)=192\\b_{1}*q^4(1+q)=192\end{cases}$.
Приравняв, наши уравнения получим:
$b_{1}*q^4(q^2-1)=b_{1}*q^4(1+q)$.
$q^2-1=q+1$.
$q^2-q-2=0$.
Получили два решения q: $q_{1}=2, q_{2}=-1$.
Последовательно подставим во второе уравнение:
$b_{1}*2^4*3=192 => b_{1}=4$.
$b_{1}*(-1)^4*0=192 =>$ нет решений.
Получили что: $b_{1}=4, q=2$.
Найдем десятый член: $b_{10}=b_{1}*q^9=4*2^9=2048$.

Сумма конечной геометрической прогрессии

Пусть у нас есть конечная геометрическая прогрессия. Давайте, также как и для арифметической прогрессии, посчитаем сумму ее членов.

Пусть дана конечная геометрическая прогрессия: $b_{1},b_{2},…,b_{n-1},b_{n}$.
Введем обозначение суммы ее членов: $S_{n}=b_{1}+b_{2}+⋯+b_{n-1}+b_{n}$.
В случае, когда $q=1$. Все члены геометрической прогрессии равны первому члену, тогда очевидно, что $S_{n}=n*b_{1}$.
Рассмотрим теперь случай $q≠1$.
Умножим указанную выше сумму на q.
$S_{n}*q=(b_{1}+b_{2}+⋯+b_{n-1}+b_{n})*q=b_{1}*q+b_{2}*q+⋯+b_{n-1}*q+b_{n}*q=b_{2}+b_{3}+⋯+b_{n}+b_{n}*q$.
Заметим:
$S_{n}=b_{1}+(b_{2}+⋯+b_{n-1}+b_{n})$.
$S_{n}*q=(b_{2}+⋯+b_{n-1}+b_{n})+b_{n}*q$.

$S_{n}*q-S_{n}=(b_{2}+⋯+b_{n-1}+b_{n})+b_{n}*q-b_{1}-(b_{2}+⋯+b_{n-1}+b_{n})=b_{n}*q-b_{1}$.

$S_{n}(q-1)=b_{n}*q-b_{1}$.

$S_{n}=\frac{b_{n}*q-b_{1}}{q-1}=\frac{b_{1}*q^{n-1}*q-b_{1}}{q-1}=\frac{b_{1}(q^{n}-1)}{q-1}$.

$S_{n}=\frac{b_{1}(q^{n}-1)}{q-1}$.

Мы получили формулу суммы конечной геометрической прогрессии.


Пример.
Найти сумму первых семи членов геометрической прогрессии, у которой первый член равен 4, а знаменатель 3.

Решение.
$S_{7}=\frac{4*(3^{7}-1)}{3-1}=2*(3^{7}-1)=4372$.

Пример.
Найти пятый член геометрической прогрессии, о которой известно: $b_{1}=-3$; $b_{n}=-3072$; $S_{n}=-4095$.

Решение.
$b_{n}=(-3)*q^{n-1}=-3072$.
$q^{n-1}=1024$.
$q^{n}=1024q$.

$S_{n}=\frac{-3*(q^{n}-1)}{q-1}=-4095$.
$-4095(q-1)=-3*(q^{n}-1)$.
$-4095(q-1)=-3*(1024q-1)$.
$1365q-1365=1024q-1$.
$341q=1364$.
$q=4$.
$b_5=b_1*q^4=-3*4^4=-3*256=-768$.

Характеристическое свойство геометрической прогрессии

Ребята, дана геометрическая прогрессия. Давайте рассмотрим три последовательных её члена: $b_{n-1},b_{n},b_{n+1}$.
Мы знаем что:
$\frac{b_{n}}{q}=b_{n-1}$.
$b_{n}*q=b_{n+1}$.
Тогда:
$\frac{b_{n}}{q}*b_{n}*q=b_{n}^{2}=b_{n-1}*b_{n+1}$.
$b_{n}^{2}=b_{n-1}*b_{n+1}$.
Если прогрессия конечная, то это равенство выполняется для всех членов, кроме первого и последнего.
Если заранее неизвестно, какой вид у последовательности, но известно что: $b_{n}^{2}=b_{n-1}*b_{n+1}$.
Тогда можно смело говорить, что это геометрическая прогрессия.

Числовая последовательность является геометрической прогрессией, только когда квадрат каждого её члена равен произведению двух соседних с ним членов прогрессии. Не забываем, что для конечной прогрессии это условие не выполняется для первого и последнего члена.


Давайте посмотрим вот на это тождество: $\sqrt{b_{n}^{2}}=\sqrt{b_{n-1}*b_{n+1}}$.
$|b_{n}|=\sqrt{b_{n-1}*b_{n+1}}$.
$\sqrt{a*b}$ называется средним геометрическим чисел a и b.

Модуль любого члена геометрической прогрессии равен среднему геометрическому двух соседних с ним членов.


Пример.
Найти такие х, что бы $х+2; 2x+2; 3x+3$ являлись тремя последовательными членами геометрической прогрессии.

Решение.
Воспользуемся характеристическим свойством:
$(2x+2)^2=(x+2)(3x+3)$.
$4x^2+8x+4=3x^2+3x+6x+6$.
$x^2-x-2=0$.
$x_{1}=2$ и $x_{2}=-1$.
Подставим последовательно в исходные выражение, наши решения:
При $x=2$, получили последовательность: 4;6;9 – геометрическая прогрессия, у которой $q=1,5$.
При $х=-1$, получили последовательность: 1;0;0.
Ответ: $х=2.$

Задачи для самостоятельного решения

1. Найдите восьмой первый член геометрической прогрессии 16;-8;4;-2… .
2. Найдите десятый член геометрической прогрессии 11,22,44… .
3. Известно, что $b_{1}=5, q=3$. Найти $b_{7}$.
4. Известно, что $b_{1}=8, q=-2, b_{n}=512$. Найти n.
5. Найдите сумму первых 11 членов геометрической прогрессии 3;12;48… .
6. Найти такие х, что $3х+4; 2x+4; x+5$ являются тремя последовательными членами геометрической прогрессии.

Похожие статьи

  • Замораживаем рыжики на зиму Хранение соленых рыжиков

    Вкусные, питательные и полезные рыжики отлично подходят для добавления в повседневные блюда или в качестве изысканного угощения к праздничному столу. Наиболее популярным вариантом их приготовления является засолка холодным способом,...

  • Золотые кони хана батыя - легендарные сокровища, точное местонахождение

    из Энциклопедии чудес, загадок и тайн ЗОЛОТЫЕ КОНИ ХАНА БАТЫЯ - легендарные сокровища, точное местонахождение которых до сих пор неизвестно. История коней примерно такова: После того, как хан Батый разорил Рязань и Киев, он...

  • Какую говядину лучше варить

    Покупка мяса - это самая существенная часть продовольственного бюджета любой семьи (за исключением вегетарианской). Кто-то предпочитает свинину, кто-то птицу, однако наиболее полезной и питательной считается говядина. Это мясо не самое...

  • Какие социальные сети существуют для общения с друзьями и родственниками

    Сегодня соцсети настолько прочно укоренились в нашей жизни, что состав пятерки самых популярных социальных площадок практически не меняется из года в год. Тем не менее, масштабы проникновения и использования этих соцсетей отличаются в...

  • Обзор самых новых лекарств от рака

    Предлагаю вашему вниманию простые, проверенные временем, средства народной медицины, которые помогут при онкологических заболеваниях .Звездчатка (мокрица). Сок растения, крепкий настой и отвар применяется для местных ванн и примочек при...

  • Самые действенные способы защиты от сглаза, порчи, колдовства, зависти

    Признаками магического нападения могут являться: любые физические, психоэмоциональные отклонения без особой на-то причины. С целью защиты в отражения удара в той же самой магии выработаны довольно мощные приемы, которые отрабатывались не...