Методические указания по консервации оборудования. Способы консервации котлов

НОРМАТИВНЫЕ ДОКУМЕНТЫ ДЛЯ ТЕПЛОВЫХ ЭЛЕКТРОСТАНЦИЙ И КОТЕЛЬНЫХ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО
КОНСЕРВАЦИИ ТЕПЛОМЕХАНИЧЕСКОГО
ОБОРУДОВАНИЯ С ПРИМЕНЕНИЕМ
ПЛЕНКООБРАЗУЮЩИХ АМИНОВ

РД 34.20.596-97

Разработано:

Московским энергетическим институтом (Техническим Университетом) (МЭИ), Всероссийским научно-исследовательским и проектно-конструкторским институтом атомного энергетического машиностроения (ВНИИАМ), Департаментом Науки и техники РАО "ЕЭС России"

Исполнители:

Мартынова О.И. (научный руководитель), Рыженков В.А., Куршаков А.В., Петрова Т.И., Поваров О.А., Дубровский-Винокуров И.Я. (МЭИ), Филиппов Г.А. (научный руководитель), Кукушкин А.Н., Салтанов Г.А., Михайлов В.А., Балаян Р.С., Величко Е.В. (ВНИИАМ)

Утверждено:

Начальник Департамента науки и техники РАО "ЕЭС России"

А.П. Берсенев

ОТРАСЛЕВОЙ РУКОВОДЯЩИЙ ДОКУМЕНТ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО КОНСЕРВАЦИИ ТЕПЛОМЕХАНИЧЕСКОГО ОБОРУДОВАНИЯ С ПРИМЕНЕНИЕМ ПЛЕНКООБРАЗУЮЩИХ АМИНОВ

РД 34.20.596-97

Вводятся впервые

Настоящий отраслевой Руководящий Документ:

Разработан в соответствии с требованиями Правил технической эксплуатации электрических станций и сетей Российской Федерации (РД 34.20.501-95);

Распространяется на основное тепломеханическое оборудование тепловых электростанций и устанавливает способ консервации и последовательность операций ее проведения при различных видах остановов (плановые и аварийные остановы, остановы для проведения текущего, среднего и капитального ремонтов, остановы в резерв на определенный и неопределенный срок);

Предназначен для эксплуатационного персонала ТЭС, водогрейных котельных, персонала наладочных предприятий, заводов-изготовителей энергетического оборудования, проектных и научно-исследовательских организаций.

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Консервацию теплоэнергетического оборудования (котлы, турбины, подогреватели) с применением аминосодержащих соединений проводят для защиты от атмосферной коррозии пароводяных трактов в случаях:

Кратковременных плановых или аварийных остановов;

Остановов для текущего, среднего или капитального ремонта:

Вывода оборудования в резерв;

При выводе оборудования из эксплуатации на длительный срок.

1.2. Защитный эффект обеспечивается за счет создания на внутренних поверхностях оборудования молекулярной адсорбционной пленки консерванта, предохраняющей металл от воздействия кислорода, углекислоты, других коррозионно-агрессивных примесей и существенно снижающей скорость коррозионных процессов.

1.3. Выбор параметров процесса консервации (временные характеристики, концентрации консерванта и т.д.) осуществляется на основе предварительного анализа состояния оборудования энергоблока (удельная загрязненность поверхностей, состав отложений, проводимого водного химического режима и т.д.).

1.4. При консервации осуществляется сопутствующая частичная отмывка пароводяных трактов оборудования от железо- и медьсодержащих отложений и коррозионно-активных примесей.

1.5. Качество консервации оценивается по величине удельной сорбции консерванта на поверхности оборудования, которая не должна быть ниже 0,3 мкг/см 2 . При возможности проводятся гравиметрические исследования образцов-свидетелей и выполняются электрохимические испытания вырезанных образцов.

1.6. Преимущества данной технологии консервации заключаются в следующем:

Обеспечивается надежная защита оборудования и трубопроводов, в том числе в труднодоступных местах и застойных зонах, от протекания стояночной коррозии в течение длительного промежутка времени (на срок не менее 1 года);

Существенно сокращается время пуска оборудования в. эксплуатацию;

Обеспечивается возможность осуществления защиты от коррозии не только конкретного оборудования по отдельности, но и всей совокупности этого оборудования, т.е. энергетического блока в целом;

Коррозионно-защитный эффект сохраняется после дренирования и вскрытия оборудования, а также и под слоем воды;

Не требуется проведения специальных мероприятий по расконсервации, обеспечивается быстрое повторное введение в эксплуатацию как отдельных элементов, так и всего законсервированного оборудования в целом;

Позволяет проводить ремонтные и регламентные работы со вскрытием оборудования;

Консервация осуществляется без значительных временных трудозатрат, расходов тепла и воды;

Обеспечивается экологическая безопасность;

Исключается применение токсичных консервантов.

1.7. На основе данных методических указаний на каждой электростанции должна быть составлена и утверждена рабочая инструкция по проведению консервации оборудования с подробным указанием мероприятий, обеспечивающих строгое выполнение технологии консервации и безопасность проводимых работ.

2. СВЕДЕНИЯ О КОНСЕРВАНТЕ

2.1. Для проведения консервации используется выпускаемый отечественной промышленностью консервант флотамин (октадециламин стеариновый технический), являющийся одним из высших пленкообразующих алифатических аминов. Это воскообразное вещество белого цвета, основные свойства которого приведены в ТУ-6-36-1044808-361-89 от 20.04.90 (взамен ГОСТ 23717-79). Наряду с отечественным консервантом может быть использован зарубежный аналог OДACON (ОДА конденсационный) повышенной степени очистки, соответствующий европейскому стандарту DIN EN ISO 9001:1994 со следующими основными параметрами:

2.2. Отбор проб консерванта и правила приемки необходимо осуществлять в соответствии с ГОСТ 6732 (красители органические, продукты промежуточные для красителей, вещества текстильно-вспомогательные). Показатели технических требований, предусмотренные ТУ, соответствуют мировому уровню и требованиям потребителей.

2.3. Предельно-допустимая концентрация флотамина в воздухе рабочей зоны не должна превышать 1 мг/м 3 (ГОСТ 12.1.005-88).

Точки отбора пробы

Концентрация

Значение рН

консерванта

Чистый отсек барабана

8 раз/смену

8 раз/смену

4 раз/смену

4 раз/смену

Солевой отсек барабана, правый

8 раз/смену

8 раз/смену

4 раз/смену

4 раз/смену

Солевой отсек барабана, левый

8 раз/смену

8 раз/смену

4 раз/смену

4 раз/смену

Пар после барабана

8 раз/смену

8 раз/смену

4 раз/смену

4 раз/смену

Пар после пароперегревателя

8 раз/смену

8 раз/смену

4 раз/смену

4 раз/смену

4.1.2.5. Штатный химконтроль выполняется в обычном объеме.

4.1.3. Консервация из "холодного" состояния.

4.1.3.1. Заполнить котел питательной водой с температурой не ниже 80 °С через коллектор нижних точек с одновременным дозированием консерванта до растопочного уровня. Растопить котел для создания необходимой температуры не ниже 100 °С и не выше 150 °С.

4.1.3.2. Установить в контуре расчетную концентрацию консерванта. В зависимости от результатов анализов проводить периодическое дозирование консерванта либо в нижние точки экранов, либо в нижний пакет водяного экономайзера.

4.1.3.3. Периодически производить продувку котла через дренажи нижних точек для удаления шлама, образовавшегося в процессе консервации оборудования вследствие частичной отмывки. Во время проведения продувки дозирование консерванта прекратить. После продувки производить подпитку котла.

4.1.3.4. Периодической растопкой котла или регулировкой количества включенных горелок необходимо поддерживать в рабочем контуре требуемые для консервации параметры (температура, давление). При растопке котла открыть воздушник насыщенного пара с пароперегревателя для сдувки пара.

4.1.3.5. После окончания консервации погасить горелки, кратковременно провентилировать газо-воздушный тракт, отключить дымососы и закрыть шибера, отключить систему дозирования консерванта и перевести котел в режим естественного расхолаживания. При средней температуре воды в котле 60 °С сдренировать котел в систему ГЗУ или при соблюдении норм ПДК осуществить сброс воды в канализацию.

При нарушении технологических параметров процесса консервации прекратить работы и начать консервацию после восстановления необходимых параметров работы котла.

4.1.4. Консервация при останове.
Указания по проведению работ при консервации

4.1.4.1. За 10 - 12 часов до начала проведения консервации прекращают дозировку фосфатов.

4.1.4.2. Непосредственно перед отключением котла от паросборного коллектора желательно произвести удаление шлама через нижние коллекторы 7 (рис. .1) экранных поверхностей нагрева.

4.1.4.3. За 15 - 20 минут до отключения котла от общего паросборного коллектора прекращают непосредственную продувку.

4.1.4.4. После окончания продувки котла от паросборного коллектора включают линию рециркуляции котловой воды из барабана котла на вход экономайзера и подают консервант в питательную воду перед экономайзером по линии 9 и по линии 10 в линию фосфатирования и барабан котла.

4.1.4.5. Перед окончанием консервации согласно режимной карте останова открывают продувку котла. Продувку ведут с минимальными расходами, что обеспечивает сохранение высокой температуры, необходимой для обеспечения максимальной эффективности консервации.

Рис. 4.1. Схема консервации барабанного котла в режиме его останова

1, 2 - система дозирования консерванта; 3 - экономайзер; 4 - выносной циклон (соленый отдел);
5 - барабан котла (чистый отсек); 6 - экран (соленый отсек); 7 - линия периодической продувки;
8 - опускные трубы; 9 - трубопровод подачи водной эмульсии консерванта на вход экономайзера котла;
10 - трубопровод подачи водной эмульсии консерванта в барабан котла; 11 - пароперегреватель;
12 - воздушник пароперегревателя; 13 - линия фосфатирования.

4.1.4.6. Процессу пассивации сопутствует частичная отмывка поверхностей нагрева котла от рыхлых отложений, переходящих в шлам, который необходимо удалять с продувкой. В период консервации постоянная продувк; закрыта. Первую продувку проводят через нижние коллекторы через 3 - 4 часа начиная с панелей солевых отсеков.

4.1.4.7. При давлении в барабане котла на уровне 1,0 - 1,2 МПе осуществляют продувку котла через воздушник 12 . При этом пар с высокие содержанием консерванта проходит через пароперегреватель, что обеспечивает его более эффективную консервацию.

4.1.4.8. Консервация заканчивается при охлаждении поверхностей нагрева до 60 °С. По окончании расхолаживания сдренировать котел в систему ГЗУ или при соблюдении норм ПДК осуществить сброс воды в канализацию.

4.1.4.9. При нарушении технологических процессов консервации прекратить работы и начать консервацию после восстановления необходимых параметров работы котла.

4.2. ПРЯМОТОЧНЫЕ КОТЛЫ

4.2.1. Подготовка к консервации

4.2.1.1. Котел остановить и сдренировать.

4.2.1.2. Схема консервации котла представлена на рис. 1. (на примере котла ТГМП-114). Для проведения консервации организуется контур циркуляции: деаэратор, питательный и бустерные насосы, собственно котел, БРОУ, конденсатор, конденсатный насос, БОУ, ПНД и ПВД байпасируются. В период прокачки консерванта через ППП обоих корпусов котла сброс происходит через СПП-1,2.

4.2.1.3. Дозировочная установка подключается на всас БЭН.

4.2.1.4. Производится заполнение контура циркуляции.

4.2.1.5. Включается в работу БЭН.

4.2.1.6. Производится разогрев рабочей среды до температуры 150 - 200 °С путем периодического включения горелок.

Рис. 4.2. Схема консервации прямоточного котла СКД

4.2.2. Перечень контролируемых и регистрируемых параметров

4.2.3. Указания по проведению работ при консервации

4.2.3.1. Приступить к дозированию консерванта на всас БЭН.

4.2.3.2. В процессе консервации производить 2 раза в смену интенсивную продувку котла в течение 30 - 40 секунд.

4.2.3.3. Поддержание необходимого диапазона температур циркулирующей среды обеспечивается путем периодического включения горелок.

4.2.3.4. После завершения процесса консервации подача пара в деаэратор прекращается, контур циркуляции находится в работе до достижения средней температуры среды 60 °С. После этого выполняются все мероприятия, предусмотренные инструкцией по эксплуатации при останове котла (дренирование водопарового тракта, вакуумная сушка консервируемых элементов и т.д.).

4.3. ВОДОГРЕЙНЫЕ КОТЛЫ

4.3.1. Подготовка к консервации

4.3.1.1. Котел остановлен и сдренирован.

4.3.1.2. Выбор параметров процесса консервации (временные характеристики, концентрации консерванта на различных этапах) осуществляется исходя из предварительного анализа состояния котла, включая определение величины удельной загрязненности и химического состава отложений внутренних поверхностей нагрева котла.

4.3.1.3. Перед началом работ провести анализ схемы консервации (ревизия оборудования, трубопроводов и арматуры, используемых в процессе консервации, системы контрольно-измерительных приборов).

4.3.1.4. Собрать схему для проведения консервации, включающую котел, систему дозирования консерванта, вспомогательное оборудование, соединительные трубопроводы, насосы. Схема должна представлять собой замкнутый контур циркуляции. При этом необходимо отсечь контур циркуляции котла от сетевых трубопроводов и заполнить котел водой. Для подачи эмульсии консерванта в контур консервации может быть использована линия кислотной промывки котла.

4.3.1.5. Опрессовать систему консервации.

4.3.1.6. Подготовить требуемые для проведения химических анализов химреактивы, посуду и приборы в соответствии с методиками анализов.

4.3.2. Перечень контролируемых и регистрируемых параметров

Рис. 6.1. Схема дозировочной установки

1 - бак; 2 - насос; 3 - линия циркуляции; 4 - подогреватель;
5 - электропривод с редуктором; 6 - патрубки;
7 - пробоотборник; 8 - кран сливной

В бак 1 , где установлен теплообменник 4 , загружается консервант. Путем обогрева бака питательной водой (t = 100 °C) получают расплав консерванта, который насосом 2 подается в линию 9 на всас питательного насоса ПЭН.

В качестве дозирующего насоса можно использовать насосы типа HШ-6, НШ-3 или HШ-1.

Линия 6 соединяется с напорным трубопроводом насоса ПЭН.

Давление в линии циркуляции контролируется манометром.

Температура в баке 1 не должна снижаться ниже 70 °С.

Установка проста в эксплуатации и надежна. Компактная система дозирования занимает мало места, до 1,5 м 2 и легко перемонтируется с одного объекта на другой.

6.2. Принципиальная схема дозирования консерванта по методу выдавливания

На рис. .1. приведена принципиальная схема установки дозирования, основанной на принципе выдавливания.

Рис. 6.2. Принципиальная схема дозирования консерванта по методу выдавливания

Указанная установка может быть использована при консервации и отмывке водогрейных котлов по замкнутому контуру циркуляции.

Установка подключается байпасом к насосу рециркуляции.

Расчетное количество консерванта загружается в емкость 8 с уровнемером и теплом рабочего тела (котловая вода, питательная вода) консервант расплавляется до жидкого состояния.

Расход рабочего тела через теплообменник 9 регулируется задвижками 3 и 4 .

Необходимое количество расплава консерванта через задвижку 5 перепускается в дозировочную емкость 10 и далее задвижками 1 и 2 регулируется необходимый расход и скорость движения рабочего тела через дозировочную емкость.

Поток рабочего тела, проходя через расплав консерванта, захватывает последний в контур циркуляции котла.

Давление на входе контролируется манометром 11 .

Для выпуска воздуха из дозировочной емкости при заполнении и дренирования служат задвижки 6 и 7 . Для лучшего перемешивания расплава в дозировочную емкость монтируется специальный диффузор.

6.3. Система приготовления и дозирования эмульсии консерванта

Система дозирования консерванта (рис. .1.) предназначена для создания и поддержания в период дозирования требуемой концентрации консерванта в консервируемом контуре путем впрыска водной эмульсии консерванта повышенной концентрации на всас питательных насосов.

Рис. 6.3. Принципиальная схема системы дозирования реагента

Система дозирования включает в себя:

Систему приготовления эмульсии консерванта;

Систему обогрева тракта впрыска;

Систему впрыска эмульсии консерванта.

Водная эмульсия консерванта приготавливается в теплоизолированном цилиндрическом баке объемом 3 - 4 м 3 . Бак заполняется водой из системы ХВО. При помощи основного нагревателя, расположенного в нижней части бака, вода нагревается до температуры 90 °С. Нагреватель изготавливается в виде змеевика и рассчитан на подогрев воды в объеме бака с 15 °С до указанной температуры в течение 1 - 1,5 часов. Греющей средой является пар с параметрами: Р = 1,2 МПа, t = 190 °С. В период дозирования этот же нагреватель служит для поддержания температуры эмульсии на уровне 80 - 90 °С (при минимальном расходе пара). Температура воды или эмульсии консерванта в баке как в период подготовки, так и в период дозирования контролируется ртутном термометром, помещенным в специальную капсулу, а также термопарным зондом с выводом сигнала на вторичный прибор. Уровень эмульсии консерванта в баке контролируется по поплавковому уровнемеру.

Бокс расплава консерванта представляет собой каркасную конструкцию, обтянутую металлической сеткой, расположенным внутри нее паровым нагревателем.

В боксе расплава консервант расплавляется и смешивается с подогретой водой. По оценке время расплава составляет 20 - 30 мин. Эмульсия консерванта приготавливается путем перемешивания содержимого бака с помощью механических лопастных мешалок с электроприводами. Для повышения интенсивности перемешивания и улучшения качества эмульсии консерванта предусмотрен контур рециркуляции с центробежным насосом.

Контроль за концентрацией консерванта и качеством эмульсии осуществляется по результатам анализа проб, взятых из специального пробоотборника.

Процесс приготовления эмульсии консерванта занимает 3 - 4 часа. В течение этого времени рекомендуется провести не менее 2-х анализов эмульсии из бака.

В связи с тем, что температура плавления консерванта сравнительно невысока, существует опасность при пониженных температурах образования пробок и сгустков в линиях впрыска и в элементах оборудования. Чтобы избежать этого, все основные линии прокладываются в сопровождении трубки, обогреваемой паром. С помощью трубы-спутника обогревается также арматура, расположенная на магистральных линиях впрыска и качающие узлы насосов.

Система впрыска включает в себя два параллельно включенных насоса. В зависимости от режимных параметров консервируемого оборудования могут использоваться центробежные насосы или насосы-дозаторы типа.

7. ТЕХНИКА БЕЗОПАСНОСТИ. ЭКОЛОГИЯ

При проведении консервации обеспечивается выполнение условий техники безопасности в соответствии с требованиями "ПТБ при эксплуатации тепломеханического оборудования электрических станций и тепловых сетей" М, 1991 г.

Пленкообразующий амин (октадециламин) относится к реагентам, применение которых одобрено и разрешено к использованию FDA/USDA и международной организацией World Assosiation of Nuclear Operation (WANO).

В специально проведенных исследованиях показано, что водная эмульсия октадециламина нетоксична даже при концентрации 200 мг/кг, что значительно превышает концентрации октадециламина в водных эмульсиях, которые используются для защиты металла энергетического оборудования от стояночной коррозии. Хирургические перевязочные средства, стерилизованные в паре, содержащем октадециламин с концентрацией от 0,5 до 1,0 г/кг не вызывали вредных эффектов на коже. Показано также [ , ], что хроническая токсичность октадециламина не наблюдалась при дозах этого продукта до 3 мг/кг, скармливаемых собакам ежегодно в течение года; при дозах 5,5 мг/кг, скармливаемых крысам в течение 2-х лет, также токсичность отсутствовала.

Предельно допустимые концентрации (ПДК) алифатических аминов с числом атомов углерода в молекуле 16 - 20 (октадециламин имеет 18 атомов углерода в молекуле) в воде водоемов санитарно-бытового использования составляет 0,03 мг/л (Санитарные правила и нормы № 4630-88 от 4.07.88) в воздухе рабочей зоны - 1 мг/м 3 (ГОСТ 12.1.005-88), в атмосферном воздухе - 0,003 мг/м 3 (список № 3086-84 от 27.08.84). Октадециламин для человека практически безвреден, однако необходимо избегать прямого контакта с ним, так в зависимости от индивидуальной восприимчивости иногда отмечается покраснение кожи, зуд, которые обычно через несколько дней после прекращения контакта с реагентом исчезают.

Имеющим контакт с пленкообразующими аминами, особенно с горячими их парами, нельзя одновременно работать со спиртами, т.к. спирт является растворителем аминов и токсичность их спиртовых растворов будет гораздо более высокой, чем токсичность водных суспензий аминов, которые плохо растворяются в воде.

При работе с пленкообразующими аминами необходимо строгое соблюдение правил личной гигиены, использование резиновых перчаток, фартука, защитных очков, при длительном контакте респиратора типа "лепесток".

При попадании эмульсии октадециламина на кожу необходимо промыть ее чистой водой и 5 %-ным раствором уксусной кислоты.

При использовании октадециламина для консервации оборудования ТЭС отработанный консервант, загрязненный продуктами коррозии конструкционных материалов и другими перешедшими из отложений примесями рекомендуется сбрасывать в отстойник (шламоотвал, пруд-охладитель и т.п.). Благодаря способности октадециламина к биологическому расщеплению с течением времени, нагрузка на отстойник по октадециламину при периодических консервациях энергетического оборудования на ТЭС незначительна.

После завершения консервации консервант из защищаемого оборудования в зависимости от имеющихся на ТЭС возможностей может быть сброшен: на шламоотвал; в систему золошлакоудаления; в систему промливнестоков с разбавлением до ПДК.

Возможно также на линии сброса эмульсии октадециламина установить фильтр, загруженный антрацитом, что позволит удалить октадециламин, а воду после фильтра возвратить в тракт ТЭС для повторного использования.

ЛИТЕРАТУРА

Акользин П.А., Королев Н.И. Применение пленкообразующих аминов для защиты от коррозии теплосилового оборудования. Москва, 1961.

Лойт А.О., Филов В.А. О токсичности алифатических аминов и изменении ее в гомологических рядах. Гигиена и санитария, № 2, 1962, 23 - 28.

Демишкевич Н.Г. К токсикологии аминов высшего алифатического ряда (16 - 20 углеродных атомов). Гигиена и санитария, № 6, 1968, 60 - 63.

СО – первый этап, дальнейшая консервация зависит от последующего срока ремонта, резерва

Примечания:

1. На котлах давлением 9,8 и 13,8 МПа без обработки питательной воды гидразином рекомендуется проведение ТО не реже одного раза в год.

2. А – заполнение поверхностей нагрева котла азотом .

3. ГРП+СО – гидразинная обработка при рабочих параметрах котла с последующим сухим остановом; ГО+ЗЩ, ТО+ЗЩ, ФВ+ЗЩ – заполнение котла щелочным раствором с предшествующей реагентной обработкой;

4. ТО+КИ – консервация контактным ингибитором с предшествующей трилонной обработкой;

5. «До», «после» – до ремонта и после него.

5. Способы консервации водогрейных котлов

5.1. Консервация раствором гидроксида кальция

5.1.1. Способ консервации раствором гидроксида кальция основан на высокоэффективных ингибирующих способностях раствора гидроксида кальция Ca(ОН)2. Защитная концентрация гидроксида кальция составляет 0,7 г/кг и выше.

Данный способ регламентирован .

5.1.2. При проведении консервации поверхностей нагрева водогрейных котлов заполнением раствором гидроксида кальция выполнением предлагаемых мероприятий достигается следующий эффект:

Формирование устойчивой защитной пленки при контакте с металлом раствора гидроксида кальция в течение 3 – 4 недель

Сохранение в течение 2 – 3 мес защитного действия пленок при опорожнении котла от раствора после контакта в течение 3 – 4 недель или более.

Полное заполнение водогрейного котла раствором гидроксида кальция при осуществлении консервации


Возможность дренирования раствора для проведения ремонтных работ после выдержки в котле в течение 3 – 4 недель

Применение способа для консервации водогрейных котлов любых типов на электростанциях, имеющих водоподготовительные установки с известковым хозяйством.

Проведение консервации раствором гидроксида кальция при выводе котла в резерв на срок до 6 мес. или выводе в ремонт на срок до 3 мес.

5.1.3. Консервацию поверхностей нагрева водогрейных котлов с заполнением раствором гидроксида кальция рекомендуется проводить выполнением предлагаемых мероприятий, поддержанием следующих параметров и максимальной реализацией возможностей схемы:

Приготовления раствора гидроксида кальция в ячейках мокрого хранения извести с плавающим устройством всасывания (рисунок 4)

Отстаивания известкового молока в течение 10 – 12 ч до полного осветления раствора после засыпки извести (пушонки, строительной извести, отходов гашения карбида кальция) в ячейки и перемешивания

Сохранения концентрации гидроксида кальция в растворе не более 1,4 г/кг вследствие малой его растворимости при температуре 10 – 25°С

Контролем положения плавающего устройства всасывания при откачке раствора из ячейки, не допуская захвата отложений со дна ячейки

Возможности использования для заполнения котлов раствором схемы кислотной промывки водогрейных котлов, приведенной на рисунке 6

Дренированием воды из котла перед заполнением его консервирующим раствором

Перекачиванием раствора гидроксида кальция из ячеек извести в бак приготовления реагентов

Промывкой трубопровода водой перед перекачкой во избежание попадания в бак известкового молока, подаваемого по этому трубопроводу на предварительную очистку водоподготовительной установки

Заполнением котла при циркуляции раствора по контуру «бак - насос - трубопровод подачи раствора - котел - трубопровод сброса раствора - бак»

Определением количества приготавливаемого известкового раствора, исходя из обеспечения заполнения консервируемого котла и схемы циркуляции, включая бак. При заполнении котла насосом из бака без организации циркуляции через котел, объем приготовленного известкового молока зависит только от водяного объема котла. Водяной объем котлов ПТВМ-50, ПТВМ-100, ПТВМ-180 составляет соответственно 16, 35 и 60 м3

Сохранением консервирующего раствора в котле на все время простоя в резерве, с плотным закрытием всей запорной арматуры на котле

1 – бак приготовления химических реагентов;

2 – насос заполнения котла раствором химических реагентов;

3 – подпиточная вода; 4 – химические реагенты;

5 – известковое молоко в мешалки предочистки;

6 – ячейки известкового молока; 7 – водогрейные котлы;

8 – к другим водогрейным котлам; 9 – от других водогрейных котлов.

Рисунок 6 – Схема консервации водогрейных котлов.

Возможности дренирования раствора при необходимости проведения ремонтных работ после выдержки в котле в течение не менее 3 – 4 недель с расчетом включения котла в работу после окончания ремонта.


Проверкой не реже одного раза в две недели значения pH раствора при сохранении на время простоя консервирующего раствора в котле

Организацией циркуляции раствора через котел для отбора контрольных анализов

Отбором пробы из воздушников при проведении циркуляции

Дренированием раствора из всего контура, если значение pH ³ 8,3 и заполнение свежим раствором гидроксида кальция

Проведением дренирования консервирующего раствора из котла небольшим расходом с разбавлением его водой до значения pH < 8,5

Дренированием и промывкой котла сетевой водой до жесткости промывочной воды перед пуском, если котел был заполнен консервирующим раствором.

5.2. Консервация раствором силиката натрия

5.2.1. Силикат натрия (жидкое натриевое стекло) образует на поверхности металла прочную, плотную защитную пленку в виде соединений Fe3O4·FeSiO3. Эта пленка экранирует металл от воздействия коррозионных агентов (СО2 и О2).

5.2.2. Формирование защитной пленки происходит при выдержке консервирующего раствора в котле в течение нескольких суток или при циркуляции раствора через котел в течение нескольких часов.

5.2.3. Консервацию поверхностей нагрева водогрейных котлов силикатом натрия рекомендуется проводить поддержанием следующих концентраций и выполнением предлагаемых организационных и технических мероприятий:

Полное заполнение водогрейного котла раствором силиката натрия с концентрацией SiO2 в консервирующем растворе не менее 1,5 г/кг

Применение силиката натрия для консервации водогрейных котлов любых типов

Проведение консервации силикатом натрия при выводе котла в резерв на срок до 6 мес. или в ремонт на срок до 2 мес.

Использование для заполнения котлов раствором схемы кислотной промывки водогрейных котлов, приведенной на рисунке 6

Возможности использования существующих бака с насосом для консервации энергетических котлов (рисунок 2)

Приготовление раствора силиката натрия на умягченной воде, так как использование воды с жесткостью выше 3 мг·экв/кг может привести к выпадению из раствора хлопьев силиката натрия

Приготовление консервирующего раствора силиката натрия в баке при циркуляции воды по схеме «бак– насос– бак» с вливанием жидкого стекла в бак через люк

Определение ориентировочного расхода жидкого товарного силиката натрия из расчета не более 6 л на 1 м3 объема консервирующего раствора

Дренирование воды из котла перед заполнением его консервирующим раствором

Установление рабочей концентрации SiO2 в консервирующем растворе на уровне 1,5 – 2 г/кг

Определение количества приготавливаемого раствора, исходя из обеспечения заполнения консервируемого котла и схемы циркуляции, включая бак. При заполнении котла насосом из бака без организации циркуляции через котел, объем приготовленного известкового молока зависит только от водяного объема котла. При заполнении котла без организации циркуляции, объем приготовленного раствора зависит только от объема котла.

Сохранение консервирующего раствора в котле на все время простоя в резерве

Возможность дренирования раствора при необходимости проведения ремонтных работ после выдержки в котле в течение не менее 4 – 6 суток с расчетом включения котла в работу после окончания ремонта.

Дренирование раствор из котла для проведения ремонта после циркуляции раствора через котел в течение 8 – 10 ч при скорости 0,5 – 1 м/с

Поддержание избыточного давления 0,01 – 0,02 МПа сетевой водой открытием задвижки на байпасе на входе в котел при сохранении консервирующего раствора в нем на все время простоя

Отбор пробы из воздушников в период консервации один раз в неделю для контроля концентрации SiO2 в растворе

Добавление необходимого количества жидкого силиката натрия и организация циркуляции раствора через котел в бак до достижения требуемой концентрации при снижении концентрации SiO2 менее 1,5 г/кг

Вытеснение консервирующего раствора в трубопроводы сетевой воды небольшими порциями (путем частичного открытия задвижки на выходе из котла) по 5 м3/ч в течение 5 – 6 ч для котла ПТВМ-100 и 10 – 12 ч для котла ПТВМ-180 при расконсервации водогрейного котла перед его растопкой.

Вдовенко Денис Юрьевич – технический директор

Запорожцев Валерий Анатольевич – начальник лаборатории

Посохов Артем Игоревич – специалист по неразрушающему контролю

Экспертная организация ООО "Теплоэнерго", г. Ростов-на-Дону

В статье приведены рекомендации по консервации паровых котлов в барабанном и прямоточном исполнении в зависимости от конструктивных особенностей, причин и сроков простоя оборудования. Рассмотрен механизм протекания стояночной коррозии металла и его последствия.

Ключевые слова: тепловая энергоустановка, стояночная коррозия, консервация, опасный производственный объект, паровой котел, безопасность.

Соблюдение требований «Правил технической эксплуатации тепловых энергоустановок» и правил безопасности требует от организаций, эксплуатирующих тепловые энергоустановки, осуществлять консервацию теплоэнергетического оборудования в следующих случаях:

− при режимных остановах оборудования (вывод в резерв на определенный и неопределенный сроки, вывод в текущий и капитальный ремонты, аварийный останов) ;

− при остановах оборудования в продолжительный резерв или ремонт (реконструкцию) сроком более 6 месяцев ;

− по окончании отопительного сезона или при остановке водогрейные котлы и теплосети консервируются .

Консервация паровых котлов в период их простоя предусматривает комплекс организационных и технических мероприятий, направленных на сохранение рабочего состояния оборудования путем предотвращения протекания коррозии на его поверхности, продлению срока эксплуатации, а также сокращению затрат на ремонт и восстановление оборудования в дальнейшем.

Согласно требованию правил организация, эксплуатирующая паровой котел должна разработать и утвердить техническое решение по его консервации. В целях соблюдения требований закона о промышленной безопасности, документация на консервацию опасного производственного объекта подлежит экспертизе промышленной безопасности .

Технические решения по консервации должны содержать:

− способы консервации котлов при различных видах остановов и продолжительности простоя;

технологическую схему консервации;

− перечень вспомогательного оборудования, посредством которого осуществляется консервация.

На основании технических решений составляется и утверждается инструкция по консервации парового котла. В свою очередь инструкция по консервации должна содержать:

подготовительные операции, выполняемые до проведения консервации;

− технологию консервации парового котла;

− технологию расконсервации парового котла;

− меры безопасности при проведении работ.

С технической точки зрения, консервация котлов необходима для предотвращения протекания стояночной коррозии металла. Стояночная коррозия возникает в результате агрессивного воздействия кислорода воздуха контактирующего с влажной металлической поверхностью котла в период его простоя. Другими словами, стояночная коррозия является видом кислородной коррозии, механизм протекания которой можно описать согласно химической реакции:

4Fe + 6Н 2 О + 3О 2 = 4Fe(OH) 3 (1)

Отличить стояночную коррозию от других видов коррозии возможно по наличию характерных язвин и накоплению продуктов коррозии на поверхности металла (рисунок 1), образующихся под отложениями шлама, в котором содержится большее количество влаги после спуска котловой воды.

Рисунок 1 – Стояночная коррозия.

Способы консервации барабанных паровых котлов:

− сухой останов котла (СО);

− поддержание в котле избыточного давления;

− заполнение поверхностей нагрева котла азотом (А);

− гидразинная обработка (ГО) поверхностей нагрева при пониженных параметрах котла;

− трилонная обработка (ТО) поверхностей нагрева котла;

− фосфатно-аммиачная «выварка» (ФВ);

− заполнение поверхностей нагрева котла защитными щелочными (ЗЩ) растворами;

− консервация котла контактным ингибитором (КИ).

Способы консервации прямоточных паровых котлов:

− сухой останов котла;

− заполнение поверхностей нагрева котла азотом;

− гидразинная обработка поверхностей нагрева при рабочих параметрах котла;

− консервация котла контактным ингибитором.

Метод консервации парового котла путем сухого останова основан на принципе обеспечения содержания внутренней поверхности оборудования в сухом состоянии на весь период консервации. Осуществляется путем дренирования котла при давлении выше атмосферного (0,8 - 1,0 МПа), что позволяет провести подсушку внутренних поверхностей барабана, коллекторов и труб за счет тепла, аккумулированного металлом, обмуровкой и изоляцией котла. Для предотвращения попадания влаги трубопроводы пара и воды отключают от котла путем плотного закрытия запорной арматуры и установки заглушек. После полного остывания котла необходимо периодически следить за тем, чтобы вода или пар не попали в котел, для этого необходимо время от времени кратковременно открывать дренажи в нижних точках коллекторов и трубопроводов.

Метод консервации путем поддержания в котле избыточного давления основан на принципе препятствия проникновения кислорода воздуха внутрь котла. После останова котла и снижения давления до атмосферного воду из него дренируют, далее приступают к заполнению консервирующей водой и организации ее протока через котел. Обязательное требование к консервирующей воде – удаление растворенного кислорода в деаэраторе. В период консервации на котле поддерживают давление 0,5 - 1,5 МПа и проток воды со скоростью 10 - 30 м 3 /ч. Контроль за содержанием кислорода в консервирующей воде осуществляют путем ежемесячного отбора проб из чистого и солевого отсеков пароперегревателя.

Метод консервации путем заполнения поверхностей нагрева котла азотом и поддержанием в котле избыточного давления предотвращает доступ кислорода и обеспечивает образование защитной пленки на поверхности метала. В случае останова котла на период до 10 суток, консервацию поверхности нагрева азотом можно осуществлять без слива котловой воды. Если останов предполагает более долгий период консервации, воду из котла необходимо слить. Подача азота в котел осуществятся через выходные коллекторы пароперегревателя и воздушники барабана. Давление газа при консервации должно поддерживаться на уровне 5 - 10 кПа.

Оставшиеся методы консервации паровых котлов можно объединить в одну большую группу – консервацию мокрым способом. Их принцип основан на заполнении котла консервирующим раствором, обеспечивающий образование по поверхности котла защитной пленки в течение длительного времени, в некоторых случаях защитная пленка устойчива при попадании в котел кислорода. Приготовление консервирующего раствора реагентов осуществляется в баке, подача раствора в котел осуществляется с применением дозирующего насоса. Приготовление консервирующего раствора необходимой концентрации осуществляется согласно утвержденным методикам.

При выборе способа консервации парового барабанного котла рекомендуется применять таблицу 1.

Примечания:

1. На котлах давлением 9,8 МПа без обработки питательной воды гидразином, должна проводиться ТО не реже одного раза в год.

2. А - заполнение поверхностей нагрева котла азотом.

3. ГРП + СО - гидразинная обработка при рабочих параметрах котла с последующим сухим остановом; ГО + ЗЩ, ТО + ЗЩ, ФВ + ЗЩ - заполнение котла щелочным раствором с предшествующей реагентной обработкой.

4. ТО + КИ (консервация контактным ингибитором с предшествующей трилонной обработкой ).

5. «до», «после» - до ремонта и после него.

При консервации парового прямоточного котла рекомендуется:

1. В случае останова на срок до 30 дней осуществлять консервацию путем сухого останова котла.

2. В случае вывода котла в резерв на срок до 3 месяцев или ремонт на срок до 5 - 6 месяцев осуществлять гидразинную или кислородную обработку в сочетании с сухим остановом котла.

3. В случае более продолжительных сроков резерва или ремонта консервацию котла осуществлять с применением контактного ингибитора или путем заполнения поверхностей нагрева котла азотом.

Таблица 1 – Способы консервации барабанных паровых котлов

в зависимости от вида и продолжительности простоя.


Выводы :

1. Консервация парового котла в период его простоя проводится с целью предупреждения развития стояночной коррозии металла.

2. Методы предупреждения стояночной коррозии основаны на принципах:

– исключения контакта кислорода воздуха с металлической поверхностью оборудования;

– обеспечения поверхности металла в сухом состоянии;

– создания защитной пленки на поверхности металла или коррозионно-защитного состава воды.

3. При выборе метода консервации паровых котлов необходимо учитывать: причину вывода оборудования в консервацию, продолжительность планируемого простоя оборудования, конструктивные особенности оборудования исходя из паспортных данных.

4. Документация на консервацию опасного производственного объекта подлежит экспертизе промышленной безопасности.

Список литературы :

1. Правила технической эксплуатации тепловых энергоустановок. Утв. приказом Минэнерго РФ от 24 марта 2003 г. N 115.

2 Федеральные нормы и правила в области промышленной безопасности "Правила промышленной безопасности опасных производственных объектов, на которых используется оборудование, работающее под избыточным давлением". Утв. приказом Ростехнадзора от 25.03.2014 N 116.

Особенностью состояния энергетики сегодня является то, что на теплостанциях увеличилось количество останов и простоев котлов, это обуславливается изменением в режиме энергопотребления и теплоснабжения. Оборудование резервируют на неопределенный период. Во время остановки котла давление среды понижается до атмосферного, присутствует вероятность попадания в него влаги и воздуха, в результате котлы подвергаются коррозии, что считается опасным, так как существует вероятность повреждения всего теплового оборудования, в том числе и трубопроводов. Поэтому на данный момент вопрос консервации особенно актуален, и разработка технологий по этому поводу прогрессирует.

Схема твердотопливного котла.

Благодаря защите от коррозии, образовавшейся во время простоя, сохраняется рабочее состояние оборудования, сокращаются затраты на его ремонт и восстановление, поддерживаются технико-экономические показатели работы тепловых электростанций, а также сокращаются издержки производства.

Существует несколько способов консервации котлов:

  • газовый способ консервации;
  • мокрый способ консервации;
  • способ применения избыточного давления;
  • сухой способ консервации.

Суточный простой незаконсервированного котла приведет к ржавчине оборудования в контуре до 50 кг оксида железа. При остановке водогрейных котлов на период 15 часов или барабанных до 1 суток рекомендуют производить консервацию способом избыточного давления, на небольшой период (5-6 дней) — метод сухой консервации. Выбор подходящего метода для исключения кислородной коррозии производится, учитывая параметры и мощность котлов, их специфику при эксплуатации.

Для предотвращения стояночной коррозии металла поверхностей нагрева котлов во время капитального и текущего ремонтов применимы только способы консервации, позволяющие создать на поверхности металла защитную пленку, сохраняющую свои свойства в течение 1-2 месяцев после слива консервирующего раствора, так как опорожнение и разгерметизация контура в этом случае неизбежны.

Инструкция по консервации паровых и водогрейных котлов газом

Схема газового котла.

Этот способ предназначен для консервации котлов во время простоя со снижением давления до атмосферного. Его применяют для консервации паровых и водогрейных котлов. Во время предложенной консервации котел опорожняют от воды и заполняют газом (к примеру, азотом), после чего поддерживают избыточное давление внутри котла, одновременно, перед тем как подать газ, его заполняют деаэрированной водой.

Способ консервации парового котла предполагает заполнение котла газом при избыточном давлении в поверхности нагрева 2-5 кг/см² при параллельном вытеснении воды в барабане. В данном случае попадание воздуха внутрь исключено. Согласно данной схеме, газ (азот) подводится к выходным коллекторам пароперегревателя и в барабан. Малое избыточное давление в котле обусловлено расходом азота.

Такой способ нельзя использовать при консервации котлов, в которых давление снизилось после остановки до атмосферного и вода была спущена. Бывают случаи аварийной остановки котла. Во время ремонта его полностью опорожняют, соответственно, внутрь попадает воздух. Удельный вес азота и воздуха несущественно отличается, поэтому в случае заполнения котла воздухом заменить его на азотный невозможно. На всех участках нахождения воздуха и там, где влажность превышает 40%, металл оборудования будет подвержен кислородной коррозии.

Малая разница в удельном весе — это не единственная причина. Вытеснение воздуха из котла и равномерное распределение по нему азота невозможно и из-за отсутствия гидравлических условий, причиной которых является система подачи азота (путем выходных коллекторов пароперегревателя и барабана). Также в котле присутствуют так называемые недренируемые участки, которые нереально заполнить. Следовательно, подобный способ применим лишь после работы котла под нагрузкой с сохранением в нем избыточного давления. Это и есть недостаток такого технического решения.

Задачей метода консервации котла газом является повышение надежности и эффективности котлов, которые выводят в резерв путем полного заполнения пароводяного тракта газом вне зависимости от режима останова. Описанный способ консервации поясняется схемой (изображение 1).
Схема консервации котла с указанием котельного оборудования:

Схема парового котла.

  1. Барабан.
  2. Воздушники.
  3. Пароперегреватель.
  4. Воздушники.
  5. Конденсатор.
  6. Воздушники.
  7. Выходной коллектор пароперегревателя.
  8. Выносной циклон.
  9. Воздушники.
  10. Экраны циркуляционных панелей котла.
  11. Экономайзер.
  12. Дренажи нижних точек котла.
  13. Воздушники выходной камеры пароперегревателя.
  14. Линия подвода азота с вентилем.
  15. Линия отвода воздуха из воздушников с вентилем.
  16. Линия отвода и подвода воды с вентилем.

Перечень необходимых инструментов, приборов, приспособлений:

  1. Манометры U-образные.
  2. Газоанализатор.
  3. Набор гаечных ключей.
  4. Плоскогубцы комбинированные.
  5. Отвертки.
  6. Напильники.
  7. Лестница.
  8. Ведро.
  9. Солидол.
  10. Паронитовые прокладки.
  11. Пробки, болты, гайки, шайбы.
  12. Средства и медикаменты первой доврачебной помощи.
  13. Огнетушитель.

Процесс консервации котла газом осуществляется следующим образом (приведен пример консервации парового барабанного котла):

Схемы сепарационных устройств в барабане котла.

Котел освобождают от воды после его останова, открыв все его нижние точки. После опорожнения в некоторых местах остается паровоздушная смесь, содержащая кислород, вызывающий коррозию металла котельного оборудования. Для того чтобы вытеснить паровоздушную смесь, все элементы котла (1, 3, 5, 7, 8, 10, 11) заполняют деаэрированной водой. Заполнение происходит через нижние точки (12). Полное заполнение контролируется вентилем (15), после чего закрывают и подают азот через вентиль (14), далее через воздушники (9, 2, 6, 4, 13).

Подавая азот в котел, необходимо открыть дренажи нижних точек всех его составляющих. Далее вода вытесняется, и котел заполняется азотом. Давление азота в котле корректируется на линии подвода 14 и (при надобности) на линии отвода 16. После того как вода полностью вытеснена и котел заполнен азотом, устанавливают необходимое для консервации избыточное давление (25-100 мм вод.ст.). Несмотря на присутствие незначительного количества деаэрированной воды в некоторых участках котла, металл оборудования коррозии не подвергается, это доказано исследованиями.

Следовательно, предложенный способ значительно повышает надежность консервации за счет абсолютного избавления котла от воздуха, заполняя его деаэрированной водой и азотом с параллельным вытеснением воды.

Инструкция мокрого способа консервации водогрейных и паровых котлов

Схема работы воздуховода.

Котел заполняют консервирующими растворами, которые создают на металле слой, сохраняющий свои свойства на протяжении всего времени бездействия парогенератора. В воду, которой заполняют парогенератор, добавляют раствор щелочи, соблюдая пропорции: 2-3 кг гидроксида натрия и 5-10 кг фосфата натрия на 1 л³ воды с добавлением 1 кг гидрата аммиака либо 10%-ный раствор гидразин-гидрата. Такой раствор обеспечивает концентрацию в воде 200 мг/кг NzH, его добавляют, используя плунжерный насос. Расконсервация котла и его растопка после этого способа консервации проходит довольно быстро. Чтобы исключить возникновение коррозии, используют специальный защитный раствор, который содержит едкий натр. Практикуется и применение кальцинированной соды, но это нежелательно, так как существует опасность возникновения местной коррозии.

Используя мокрый способ консервации, котел заполняют защитным раствором, что обеспечивает абсолютную устойчивость к ржавчине, даже если жидкость насыщена кислородом. Во время использования предложенного метода консервации возможно определить срок допускаемой продолжительности без потери горной выработки; определяют сроки осушения, ремонт крепи, вентиляции, подъемного комплекса и другого оборудования с проведением иных репаративных мероприятий.

Технология консервации мокрым способом

Проводя мокрую консервацию котла, нужно обеспечить сухость его поверхности и кладки, плотно закрыть все люки. Следить за концентрацией раствора (содержание сульфата натрия должно быть не ниже 50 мг/л). Применение метода мокрой консервации при проведении ремонтных работ или при наличии неплотностей в котле неприемлемо, так как соблюдение герметичности является главным условием. Если при сухом и газовом методе консервации просачивание пара недопустимо, то при мокром — не так опасно.

Схема двухоборотного пароперегревателя.

При необходимости остановить котел на небольшой период используют простой метод мокрой консервации, заполняя котел и паронагреватель деаэрированной водой с поддержанием избыточного давления. В случае понижения давления в котле после его останова до 0 заполнение деаэрированной водой уже безрезультатно. Тогда нужно вскипятить котловую воду при открытых воздушниках, это делается с целью удаления кислорода. После кипячения, если остаточное котловое давление не ниже 0,5 МПа, можно проводить консервацию. Такой метод применяют только при невысоком содержании кислорода в деаэрированной воде. Если содержание кислорода превышает допустимое значение, возможна коррозия металла пароперегревателя.

Котлы с остановом в резерв сразу после работы могут быть подвержены мокрому способу консервации, не вскрывая барабаны и коллекторы.

В питательную воду можно добавить аммиак в газообразном виде. На поверхности металла образуется защитная пленка, предохраняющая его от коррозии.

Для того чтобы исключить возникновение коррозии в котлах, которые находятся в резерве долгое время, используют метод мокрой консервации, поддерживая в котле избыточное давление азотной подушки над жидкостью, исключается вероятность проникновения воздуха в котел. В отличие от сухой консервации, при которой водоотливные средства действуют, обеспечивается водоотлив из горной выработки, котельное оборудование поддерживается в состоянии, пригодном к использованию при необходимости. На момент консервации списание запасов полезных ископаемых не разрешается.

Способ консервации путем создания избыточного давления

Схема подключения клапана котла.

Инструкция по технологии консервации котла путем создания избыточного давления применима вне зависимости от поверхности нагрева котла. Другие методы с применением воды и специальных растворов не способны защитить от коррозии промежуточные пароперегреватели котлов, так как во время заполнения и отмывки возникают определенные трудности. Чтобы защитить пароперегреватели, применяют консервацию путем вакуумной сушки с применением газообразного аммиака или заполнение азотом вне зависимости от простоя. Что касается металла экранных труб и других частей пароводяного тракта барабанных котлов, они в такой же мере не защищены на все 100%.

Предлагаемая технология консервации подходит как для паровых, так и для водогрейных котлов. Принцип данного метода заключается в поддержании в котле давления выше атмосферного, что предотвратит попадание в него кислорода, и применяется для котлов любых типов давлений. Для поддержки избыточного давления в котле его заполняют деаэрированной водой. Такой способ применяют, когда существует необходимость вывода котла в резерв или проведения ремонтных работ, не связанных с проведением мероприятий на поверхности нагрева, общим сроком до 10 суток.

Осуществление метода поддержания избыточного давления в остановленных водогрейных или паровых котлах возможно несколькими способами:

  1. Во время простоя котлов более 10 дней применима консервация сухим или мокрым способами (определяется наличием тех или иных реагентов, прокладочных материалов и т.д.).
  2. Во время длительного простоя в зимнее время и при отсутствии отопления помещения котлы консервируют сухим методом; применение мокрого способа консервации в данных условиях недопустимо.

Выбор того или иного способа зависит от режима эксплуатации котельной, общего числа резервных и действующих котлов и т.д.

Сухой способ консервации котлов

Схема отвода котла.

Освобождение котла от воды при давлении выше атмосферного происходит после опустошения за счет тепла, накопленного металлом, обмуровки и изолированности с поддержанием температуры котла выше температуры атмосферного давления. Одновременно подсушиваются внутренние поверхности барабана, коллекторов и труб.

Сухой останов применим к котлам с любым давлением, но при условии отсутствия в них вальцовочных соединений труб с барабаном. Проводится при плановом останове в резерв или на период ремонтных работ оборудования сроком не более 30 суток, а также при аварийном останове. Для того чтобы исключить попадание в котел влаги во время простоя, нужно следить за его отключением от трубопроводов воды и пара, находящихся под давлением. Должны быть плотно закрыты: установки проглушек, запорная арматура, ревизионные вентили.

Вытеснение воды производят при показателях давления 0,8-1,0 МПа после того, как котел был остановлен и охлажден естественным путем. Промежуточный пароперегреватель обеспаривают на теплообменник. По окончании дренирования и подсушки вентили и задвижки пароводяной схемы котла, лаз и шибер топки и газохода должны быть закрыты, открытыми остаются лишь ревизионный вентиль, в случае необходимости устанавливают проглушки.

В процессе консервации после того, как котел полностью остыл, необходимо периодически следить за попаданием воды или пара в котел. Такой контроль осуществляется путем зондирования пространств вероятного попадания их в области запорной арматуры, открытия дренажей нижних точек коллекторов и трубопроводов, вентилей пробоотборных точек на небольшой период.

В случае обнаружения попадания воды в котел нужно принять необходимые меры. После этого котел подлежит растопке, поднятию в нем давления до 1,5-2,0 МПа. Указанное давление поддерживают на протяжении нескольких часов, а затем производят азот заново. Если попадание влаги невозможно устранить, прибегают к способу консервации путем поддержания в котле избыточного давления. Подобный метод еще используют, если во время останова котла производились ремонтные работы оборудования на поверхностях нагрева и возникла необходимость опрессовки.

РД 34.20.593-89

МЕТОДИЧЕСКИЕ УКАЗАНИЯ
ПО ПРИМЕНЕНИЮ ГИДРОКСИДА КАЛЬЦИЯ ДЛЯ КОНСЕРВАЦИИ
ТЕПЛОЭНЕРГЕТИЧЕСКОГО И ДРУГОГО ПРОМЫШЛЕННОГО ОБОРУДОВАНИЯ
НА ОБЪЕКТАХ МИНЭНЕРГО СССР


Срок действия с 01.01.89
до 01.01.99*
__________________
* О дате окончания действия см. ярлык "Примечания". -
Примечание изготовителя базы данных.


РА3РАБОТАНО Всесоюзным межотраслевым научно-исследовательским институтом по защите металлов от коррозии, РЭУ "Мосэнерго", 1-м Московским ордена Ленина и ордена Трудового Красного Знамени медицинским институтом им. И.М.Сеченова

ИСПОЛНИТЕЛИ А.П.АКОЛЬЗИН (Всесоюзный Межотраслевой научно-исследовательский институт по защите металлов от коррозии), Г.А.ЩАВЕЛЕВА (РЭУ "Мосэнерго"), Ю.Я.ХАРИТОНОВ (1-й ММИ)

УТВЕРЖДЕНО Главным научно-техническим управлением энергетики и электрификации 30.12.88 г.

Заместитель начальника А.П.БЕРСЕНЕВ


Настоящими Методическими указаниями изложен способ защиты от стояночной коррозии теплоэнергетического оборудования при выводе его в резерв, а также при аварийных и плановых остановах.

Консервация раствором гидроксида кальция применяется для любых водогрейных котлов и для паровых барабанных котлов давлением до 4,0 МПа, не имеющих пароперегревателей, а также для паровых котлов с пароперегревателями, но сами пароперегреватели не консервируются.

Методические указания распространяются на стационарные электростанции, отопительные котельные, предприятия, имеющие водогрейные и паровые энергетические котлы давлением до 4,0 МПа, и должны быть учтены проектными организациями.

На основании настоящих Методических указаний на предприятиях составляются местные рабочие инструкции по консервации.

При консервации оборудования необходимо соблюдать действующие "Правила техники безопасности при эксплуатации тепломеханического оборудования электростанций и тепловых сетей" (М.: Энергоиздат, 1985), а также меры предосторожности, изложенные в разд.4.

1. ХАРАКТЕРИСТИКА СПОСОБА КОНСЕРВАЦИИ ТЕПЛОЭНЕРГЕТИЧЕСКОГО ОБОРУДОВАНИЯ ГИДРОКСИДОМ КАЛЬЦИЯ

1. ХАРАКТЕРИСТИКА СПОСОБА КОНСЕРВАЦИИ
ТЕПЛОЭНЕРГЕТИЧЕСКОГО ОБОРУДОВАНИЯ ГИДРОКСИДОМ КАЛЬЦИЯ

1.1. Метод защиты от стояночной коррозии (консервации) теплоэнергетического оборудования, основанный на использовании ингибирующих растворов гидроксида кальция , является высокоэффективным.

1.2. Гидроксид кальция (см. справочное приложение) является нефондируемым местным продуктом, что обеспечивает его широкую доступность. Он является также отходом ряда производств (например, сварочного). Растворы гидроксида кальция безвредны для человека и окружающей среды. При сбросе отработанных растворов требуется разбавление их водой до рН<8,5. Вследствие малой растворимости (около 1,4 г/л при 25 °С) создать концентрации раствора гидроксида кальция, опасные для жизни и здоровья человека, практически невозможно. Кроме того, в естественных условиях (водоемах, почвах) происходит быстрая нейтрализация гидроксида кальция путем его взаимодействия с углекислым газом атмосферы, в результате чего образуется карбонат кальция (мел), также безопасный для здоровья человека.

1.3. Эффективность защитного действия растворов гидроксида кальция в отношении металла теплоэнергетического оборудования по всем показателям значительно выше, чем ряда других ингибиторов.

Например, скорость коррозии стали в присутствия гидроксида кальция (защитной концентрации, см. п.1.4) в средах, содержащих до 3 г/л хлоридов, в 1,5-2,2 раза ниже, чем в растворах силиката натрия, и в 10-12 раз ниже, чем в растворах гидроксида натрия при одинаковых эквивалентных концентрациях ингибиторов. Скорость коррозии определялась гравиметрически и методом поляризационного сопротивления.

1.4. Защитной концентрацией растворов гидроксида кальция в отношении изготовленного из углеродистой стали оборудования является 0,7 г/л и выше.

Передозировка невозможна вследствие его ограниченной растворимости.

1.5. При длительной консервации (больше месяца) в условиях контакта консервирующего раствора с воздухом концентрация его постепенно снижается за счет поглощения кислых составляющих воздуха. Снижение рН до значения менее 8,3 недопустимо, так как свидетельствует о появлении в консервирующем растворе карбонатов, бикарбонатов и гидросульфитов, т.е. продуктов взаимодействия гидроксида кальция с составляющими воздуха. Результатом этого взаимодействия является снижение защитного эффекта. Контроль консервирующего раствора осуществляется отбором проб не реже 1 раза в неделю. При снижении рН раствора ниже допустимого уровня (исчезновение окраски по фенолфталеину) консервирующий раствор следует обновить.

При отсутствии контакта с воздухом защитные свойства раствора не ограничиваются временем.

1.6. Присутствие активаторов коррозии (хлоридов в концентрации до 0,365 г/л и сульфатов до 0,440 г/л) в растворе гидроксида кальция с концентрацией 0,7 г/л и выше практически не снижает защитные свойства консервирующих растворов. Это объясняется тем, что в растворах гидроксида кальция на поверхности углеродистой стали формируется фазовая защитная пленка толщиной 12-21 мкм, состоящая из нерастворимых гидроксо- и аквакомплексов железа и кальция, в состав которой входит также , и другие соединения и ионы.

1.7. В случае, если в водном консервирующем растворе присутствуют бикарбонаты (при приготовлении раствора на речной воде), защитные свойства формирующихся на стали пленок повышаются благодаря дополнительному образованию слоев карбоната кальция (мел).

1.8. Консервирующий раствор приготавливается на воде с температурой ниже 40 °С, так как с повышением температуры растворимость гидроксида кальция в воде понижается и уменьшаются защитные свойства раствора.

2. ТЕХНОЛОГИЯ КОНСЕРВАЦИИ

2.1. Консервирующие растворы гидроксида кальция готовятся из известкового молока. На ВПУ с предочисткой можно использовать раствор извести, приготавливаемый для осветлителей.

2.2. Для приготовления известкового молока может быть использована практически любая гашеная известь, в том числе строительная, с предварительным удалением недопала; известь пушонка; отходы гашения карбида кальция при производстве ацетилена. В гашеной извести и известковом молоке не должны присутствовать песок, глина и другие загрязнения, нерастворимые в воде (см. пп.2.5, 2.6, 2.8).

2.3. Консервирующие растворы готовят на конденсате или химически очищенной воде. Морская и котловая вода не пригодна для приготовления консервирующих растворов.

2.4. Консервирующий раствор готовят в отдельном расходном баке объемом 20-70 м. Удобнее, когда объем расходного бака превышает объем консервируемого оборудования. Количество гашеной извести, подаваемой в расходный бак для приготовления консервирующего раствора, составляет 1-1,5 кг на 1 м воды в баке. Предварительно известь размешивают с водой до жидкой консистенции, затем смесь заливают в бак через сетку с ячейками не более 1 мм для задержания твердых примесей.

2.5. В баке консервирующий раствор отстаивается 10-12 ч до полного осветления и растворения реагента.

2.6. Из расходного бака в котел консервирующий раствор может подаваться самотеком. Для этого бак устанавливают над котлом. Если расходный бак находится внизу, заполнение котла производится с помощью насосов.

2.7. Отбор консервирующих растворов производят не из нижней точки расходного бака, а с уровня 40-50 см от дна бака во избежание попадания твердых нерастворимых частиц в котел. С этой же целью перед подачей в котел консервирующие растворы пропускают через любой механический фильтр.

2.8. Консервирующий раствор подают в полностью сдренированный и остывший котел. Консервация может проводиться как на очищенном химическим или механическим способом котле, так и на котле, имеющем внутренние отложения. Раствор подается через нижние коллекторы котла.

2.9. Консервирующий раствором заполняют весь внутренний объем водогрейного котла. Если водогрейный котел имеет замкнутый контур циркуляции, то консервирующим раствором заполняют весь контур, включая трубопроводы и теплообменники. У барабанных котлов заполняют водяные экономайзеры, охранные и опускные трубы и барабан котла.

2.10. Если количество раствора, приготовленного в расходном баке, недостаточно для заполнения всего котла, в расходном баке готовят следующую порцию консервирующего раствора в соответствии с пп.2.4-2.8.

2.11. Для водогрейных котлов целесообразно предусматривать стационарные системы приготовления консервирующих растворов и подачи их в котел. Возможные схемы приготовления и подачи консервирующих растворов представлены на рис.1, 2. На рис.1 для приготовления растворов в схеме имеется бак-сатуратор. Имеется также фильтр (например, типа солерастворителя водоподготовки). На рис.2 показан другой вариант консервации, который предусматривает подачу консервирующего раствора с использованием схемы кислотной промывки водогрейных котлов.

Рис.1. Схема ввода гидроксида кальция в консервируемое оборудование

Рис.1. Схема ввода гидроксида кальция в консервируемое оборудование:

1 - заправочная воронка; 2 - бак приготовления известкового молока; 3 - бак приготовления консервирующего
раствора гидроксида кальция; 4 - фильтр; 5 - расходный бак; 6 - эжектор; 7 - подающий насос; I - конденсат;
II - химически очищенная вода; III - пар; IV - отбор проб до ввода гидроксида кальция; V - отбор проб после
ввода гидроксида кальция; VI - из питательных баков; VII - на котлы

Рис.2. Схема консервации водогрейных котлов раствором Ca(OH)(2) с использованием схемы кислотной промывки

Рис.2. Схема консервации водогрейных котлов раствором с использованием схемы кислотной промывки:Если процедура оплаты на сайте платежной системы не была завершена, денежные
средства с вашего счета списаны НЕ будут и подтверждения оплаты мы не получим.
В этом случае вы можете повторить покупку документа с помощью кнопки справа.

Произошла ошибка

Платеж не был завершен из-за технической ошибки, денежные средства с вашего счета
списаны не были. Попробуйте подождать несколько минут и повторить платеж еще раз.

Похожие статьи

  • Замораживаем рыжики на зиму Хранение соленых рыжиков

    Вкусные, питательные и полезные рыжики отлично подходят для добавления в повседневные блюда или в качестве изысканного угощения к праздничному столу. Наиболее популярным вариантом их приготовления является засолка холодным способом,...

  • Золотые кони хана батыя - легендарные сокровища, точное местонахождение

    из Энциклопедии чудес, загадок и тайн ЗОЛОТЫЕ КОНИ ХАНА БАТЫЯ - легендарные сокровища, точное местонахождение которых до сих пор неизвестно. История коней примерно такова: После того, как хан Батый разорил Рязань и Киев, он...

  • Какую говядину лучше варить

    Покупка мяса - это самая существенная часть продовольственного бюджета любой семьи (за исключением вегетарианской). Кто-то предпочитает свинину, кто-то птицу, однако наиболее полезной и питательной считается говядина. Это мясо не самое...

  • Какие социальные сети существуют для общения с друзьями и родственниками

    Сегодня соцсети настолько прочно укоренились в нашей жизни, что состав пятерки самых популярных социальных площадок практически не меняется из года в год. Тем не менее, масштабы проникновения и использования этих соцсетей отличаются в...

  • Обзор самых новых лекарств от рака

    Предлагаю вашему вниманию простые, проверенные временем, средства народной медицины, которые помогут при онкологических заболеваниях .Звездчатка (мокрица). Сок растения, крепкий настой и отвар применяется для местных ванн и примочек при...

  • Самые действенные способы защиты от сглаза, порчи, колдовства, зависти

    Признаками магического нападения могут являться: любые физические, психоэмоциональные отклонения без особой на-то причины. С целью защиты в отражения удара в той же самой магии выработаны довольно мощные приемы, которые отрабатывались не...