«Глобальные изменения в энергетике неизбежны»: какие решения нужны в этой сфере. Инновации и прорывные технологии в электроэнергетике Энергетические инновации

Но при этом запрос на перспективные инновационные темы исследований в энергетике есть. Драйверами здесь выступают национальные программы поддержки инвестиций, цифровизация отрасли и растущие внешние рынки распределенной энергетики.

Ненаучный НИОКР

Первый и очевидный индикатор инновационности любой компании – это расходы на НИОКР. Именно они в первую очередь должны отражать потребность компаний в инновационных решениях. Но по факту доля этих затрат у российских энергетиков не значительна. Так, «Россети» тратят ежегодно на всю программу НИОКР около 1,0 млрд руб., «РусГидро» – 0,4 млрд руб., «Интер РАО» – 0,2 млрд руб., «Газпром энергохолдинг» – 0,35 млрд руб.

На практике большая часть этих средств (до 80 %) носит прикладной характер и идет на разработку обновленных линеек используемых сейчас видов оборудования и требований к ним. Энергокомпании заказывают исследования у научных и научно-производственных коллективов для создания оборудования с заданными функциями или программного обеспечения по известному техническому заданию.

НИОКР энергокомпаний в основной массе осуществляются на базе фундаментально исследованных научных принципов и испытанных технологических процессов. С одной стороны, такие исследования едва ли переведут технологическое развитие на новый уровень, но, с другой, серьезно повлияют на рынок оборудования, формируя актуальный технический и конкурентный ландшафт производителей.

Так, например, технологические стандарты для интеллектуального учета электроэнергии и соответствующие требования основных покупателей таких систем – сетевых и сбытовых компаний, могут определить не только предпочтительные технологии передачи данных (радио, PLC, 4 / 5G), но и контуры будущего рынка производства оборудования ежегодным объемом 40‑60 млрд руб. на десятилетие вперед.

Важно, что инициатором конкретной работы может быть и энергокомпания, и сам разработчик перспективного решения. Заказчик же, заинтересованный в запуске нового устройства в промышленную эксплуатацию, определяет бюджет НИОКР и проводит необходимые закупочные процедуры.

Вертикально интегрированные инновации

Для таких компаний, как ГК «Рос­атом», представляющих собой комплекс вертикально интегрированных предприятий ядерной энергетики, затраты НИОКР доходят до 4,5 % от выручки (около 40 млрд руб. в год) и становятся стандартным инструментом финансирования входящих в госкорпорацию отраслевых научно-исследовательских институтов.

При этом «Росатом» во многом изыскивает ресурсы для инновационных разработок в федеральном бюджете: так, например, он претендует на 200 млрд руб. в разрабатываемой сейчас национальной программе «Развитие атомной науки, техники и технологий». Средства должны пойти прежде всего на развитие нового типа реакторов – на быстрых нейтронах.

Расходы на НИОКР «Росатома», в отличие от других российских энергокомпаний, в абсолютных показателях сравнимы с лидерами зарубежной энергетики. Французская EDF тратит на исследования 0,9 % от выручки, испанская Iberdrola – 0,8 %, шведский Vattenfall – 0,5 %, канадская HydroQuebec – 0,9 %. Надо отметить, что многие их этих компаний управляют широко диверсифицированным энергетическим бизнесом, а большинство контролируются национальными правительствами. А значит, затраты на науку и развитие технологий идут рука об руку с государственными приоритетами.

Надо отметить, что среди глобальных лидеров инноваций в энергетике практически нет исключительно сетевых или, например, генерирующих компаний. Основная масса компаний ТЭКа в мире, вкладывающих значительные средства в НИОКР, либо вертикально интегрированные крупные структуры, либо работают в отраслях с экспортным потенциалом, таких, как, например, добыча нефти и газа.

Нацпрограммы как двигатель НИОКР

В электроэнергетике на сегодняшний день в мире больше других тратят на прикладную науку компании, работающие в сфере возобновляемой энергетики. Это, например, канадская Canadian Solar, американская First Solar, китайская Guodian Technology, датская Vestas, испанская Siemens Gamesa и другие. Они занимаются строительством и эксплуатацией солнечных или ветроэлектростанций, востребованных в рамках национальных программ развития энергетики.

Есть амбиции войти в эти списки и у отечественных лидеров сегментов ВЭС и СЭС – «Хевел», «Солар Системс», «НоваВинд», которые пока сконцентрированы на реализации первого этапа программы поддержки ВИЭ в России объемом в 5,5 ГВт.

Серьезные инвестиции в НИОКР могут потребоваться и в рамках одобренного российским правительством плана модернизации ТЭС. Для повышения топливной эффективности электростанций нужны уникальные отечественные производства газовых турбин большой мощности и их компонентов. Задача стоит действительно амбициозная: например, итальянскому производителю Ansaldo понадобилось 14 лет (с 1991 по 2005 г.) на обретение технологической независимости от лицензионных газовых турбин Siemens. Претендуют на этот рынок и «Силовые машины» и «Ростех», хотя во многом они ориентируются на государственные субсидии.

Регулируемая наука

Таким образом, финансирование НИОКР в отношении инновационных для России технологий – в возобновляемой энергетике и парогазовом цикле, становится возможным благодаря регуляторным решениям. Правительство запустило механизмы поддержки возобновляемой энергетики и модернизации тепловых электростанций, разрешив использовать оборудование, произведенное только в России. Источником для финансирования как строительства, так и НИОКР, станут в конечном итоге дополнительные платежи потребителей, собранные на оптовом рынке электрической энергии.

Без подобных мер стимулирования инвестиций энергетики вынуждены существовать в жестких тарифных ограничениях, не имея ресурсов и стимулов для инвестиций в развитие. Кроме того, большая часть их бизнес-процессов регламентирована почти всеобъемлющим спектром отраслевых требований. Это и стандарты для применяемого оборудования, и требования к безопасности, нормы проектирования объектов, требования к ремонту и обслуживанию производственных активов, антимонопольные ограничения в работе с потребителями и поставщиками, стандарты обязательного информационного обмена с регуляторами и инфраструктурой рынка.

Все эти факторы не создают благоприятной среды для инновационного развития и вложений в новые технологии. Компании ограничивают свои затраты первоочередными нуждами и капитальными вложениями на поддержание ресурса оборудования.

Государственный венчур

Неудивительно, что в условиях тарифного регулирования и строгого контроля отрасли инновации необходимо искусственно стимулировать на уровне законодательства или специальных распоряжений правительства.

В 2017 г. президент России поручил крупнейшим государственным корпорациям – «Ростеху», «Роскосмосу», «Росатому», Объединенной авиастроительной корпорации и Объединенной судостроительной корпорации создать собственные венчурные фонды.

Из энергокомпаний в этом списке пока только «Росатом», запустивший фонд на 3 млрд руб., но этот инструмент очень важен и нужен отрасли. Венчурное инвестирование позволяет корпорации-заказчику, входя небольшой долей в капитал разработчика перспективного продукта, выбирать и контролировать наиболее важные проекты. Команда основателей при этом сохраняет контроль в проекте и остается заинтересованной в коммерческой реализации технологии.

Пока этот рынок в России совсем невелик и составляет около 20 млрд руб. в год, проявляясь в основном в сферах ИТ, транспорта и финансов. Очевидно, что госкомпании даже небольшими усилиями могут серьезно изменить здесь расстановку сил, создав новую инфраструктуру для поиска и отбора проектов.

Если догонять, то быстро

Несмотря на все барьеры, перспективные направления для исследований в энергетике имеются. Это упомянутые уже технологии ВИЭ и газовых турбин большой мощности, технологии топливных ячеек, системы хранения энергии. Важно, что эти разработки будут иметь и экспортный потенциал.

Одной из более актуальных потребностей отрасли в инновациях является цифровизация энергетики. Прямо сейчас энергетикам нужны разработки отечественного ПО управления электрическими сетями и микроэнергосистемами, систем информационной безопасности критической инфраструктуры, технологии анализа данных и предиктивной аналитики.

Но пока развитие инноваций живет в логике «догоняющей» модели, совершенно не новой для нашей страны. И если рассматривать направления по отдельности, то предпринимаемые усилия выглядят очень скромно. Так, глобальный рынок электрохимических накопителей энергии ежегодно удваивается и в 2019 году приблизится к 8 млрд долл. США. Отечественные же инициативы в этой чрезвычайно перспективной и «горячей» сфере пока сводятся к дорожным картам и неторопливому поиску площадок для размещения пилотных проектов. Хотя именно этот рынок, обладающий серьезным экспортным потенциалом, выглядит наиболее привлекательным для исследований и запуска инновационных производств.

Но о каком бы финансировании инноваций ни шла речь – государственном заказе, корпоративных закупках или привлечении венчурного инвестора, инициатором НИОКР всегда может выступить сам разработчик перспективного решения. Это значит, что технологическое будущее российской энергетики и ее конкурентоспособность на мировой арене находится в общих руках – государства, подконтрольных ему энергокомпаний и проактивных научных коллективов.

Возобновляемые источники энергии (ВИЭ) с каждым годом становятся все более заметными в мировой энергетике. В США и странах Евросоюза доля ВИЭ в общем объеме производства в 2010 году составила 11% и 9,6%, соответственно. И по прогнозам к 2020 году она вплотную приблизится к 25%. При этом количество энергии, вырабатываемой ВИО, возрастет в странах Евросоюза в 3,8 раза, а в США - в 22,5 раза.

Развитие возобновляемых источников энергии в России находится на ранних этапах. В 2010 году доля возобновляемой энергетики в общем объеме производства составила 0,9% с установленной мощностью в 2,1 ГВт. К 2020 году доля ВИЭ возрастет до 4,5% с установленной мощностью в 25 ГВт.

Несмотря на серьезные проблемы, ограничивающие рост использования ВИЭ в России, существуют существенные предпосылки для их активного развития.

Использование возобновляемых источников энергии играет важную роль в развитии распределенной энергетики .

Распределенная энергетика является приоритетной сферой экономически эффективного практического использования ВИЭ в России. В этой сфере установки на ВИЭ уже сегодня могут успешно конкурировать с традиционными энергоустановками.

Потенциальные масштабы возможного эффективного использования ВИЭ в сфере распределенной генерации уже сегодня измеряются гигаватами. Наряду с законодательной и финансовой поддержкой развития ВИЭ в централизованной энергетике, государственная политика должна учитывать и стимулировать развитие ВИЭ в регионах в сфере распределенной энергетики.

Ключевые предпосылки развития распределенной энергетики с использованием ВИЭ:

  • 2/3 территории страны расположены вне сетей централизованного энергоснабжения: население около 20 млн чел., районы с наиболее высокими ценами и тарифами на топливо и энергию (более 25 руб./
  • кВтч);
  • Более 50% регионов страны энергодефицитны: завоз топлива, импорт электроэнергии – задача повышения региональной энергетической безопасности;
  • Газифицировано около 50% населенных пунктов, а в сельской местности - менее 35%.

Рассмотрим различные технологии возобновляемой энергетики.

Среди основных проблем солнечной энергетики можно выделить непостоянность и непредсказуемость основного источника энергии, зависимость от погодных и климатических условий, и обусловленная этим необходимость в накопителях энергии или дополнительных источниках энергии. Существенными недостатками являются высокая стоимость фотоэлектрических систем (ФЭС) с учетом необходимости в накопителях и обратных преобразователях переменного тока (до 50% от общей стоимости системы), сравнительно низкий КПД (от 4-5% до 20% для традиционных фотоэлектрических модулей (ФЭМ), и до 40% для концентрирующих ФЭМ) и низкая энергоемкость (~8-12 м2/кВт), вследствие чего под ФЭС требуются большие территории (Таблица 1).

Наиболее перспективными из перечисленных выше технологий являются:

  • Усовершенствованные неорганические тонкопленочные ФЭМ - Сферические ФЭМ на основе селенида меди-индия (CIS) и тонкопленочные поликристаллические кремниевые ФЭМ;
  • Органические ФЭМ (в том числе фотосенсибилизированные красителем ФЭМ на основе органических полимеров);
  • Термо-фотоэлектрические (TPV) ячейки с узкой запрещенной зоной (low gap-band).

Основные исследования в области развития фотоэлектрических технологий направлены на снижение себестоимости фотоэлектрических модулей за счет:

  • Повышения КПД фотоэлектрических модулей I-го и II-го поколения:
  • Снижения потребления материалов – использования пленочных ФЭМ;
  • Повышения энергоемкости – уменьшения поверхности ФЭМ;
  • Использования органических материалов взамен дефицитного сырья (такого как серебро, индий, теллур, свинец и кадмий);
  • Снижения стоимости и сроков окупаемости ФЭМ (Рисунок 1);
  • Использования более тонких и эффективных фотоэлектрических пластин;
  • Использования поликремневых заменителей (например, металлургического кремния).

Ветроэнергетика

Ветроэнергетика является одним из наиболее популярных и быстро развивающихся направлений альтернативной энергетики. Тем не менее, её распространение так же ограничивается непостоянностью ветра, как источника энергии, нарушением эстетического пейзажа ввиду установки огромных 100-метровых ветровых мельниц и сложностями с подключением к существующим сетям ввиду отдаленности наиболее благоприятных территорий для установки ветрогенераторов от существующей инфраструктуры. Стоимость ветряной турбины составляет около 80% от общей стоимости ветрогенератора, и поэтому основные усилия по снижению себестоимости ветряной энергии направлены на снижение расходов на производство турбин.

Среди основных направлений развития технологий в ветроэнергетике выделяются следующие:

Увеличение генерирующего потенциала:

  • Увеличение размеров турбин (см. рис.);
  • Увеличение высоты турбинных башен;
  • Использование оффшорных ветров и ветров на больших высотах;

Улучшение материалов:

  • Снижение зависимости башенных конструкций от стальных элементов;
  • Снижение веса пропеллеров (использование углеродных волокон и высокоинтенсивного углепластика);

Улучшение системы привода (редуктор, генератор, электроника) :

  • Развитие технологии сверхпроводников для более легких и эффективных электрогенераторов;
  • Использование постоянных электромагнитов в электрогенераторах.

Среди новых перспективных разработок выделяются:

Летающие ветряные турбины:

Makani Airborne Wind Turbine - на 90% легче традиционных турбин, запускается с использованием электрического двигателя, способна генерировать электричество на низких скоростях ветра;

Altaeros Airborne Wind Turbine - использует наполненную гелием оболочку для подъема на большие высоты;

Magenn Air Rotor System (M.A.R.S.) - MARS улавливает энергию ветра на высоте от 200 до 300 метров, а также струйные потоки воздуха, возникающие практически на любой высоте;

Генерация на ветрах низких скоростей

Wind Harvester - новая модель ветрогенератора основывается на возвратно-поступательном движении с использованием горизонтальных аэродинамических поверхностей;

Ветряная линза

Ветряная линза (Япония, университет Кюсю) - направленное внутрь изогнутое кольцо, располагающееся по периметру окружности, описываемой лопастями турбины при вращении. Увеличивает мощность ветряной турбины втрое при одновременном уменьшении уровня шума, имеет наибольший потенциал использования в открытом море;

Ветряные турбины с вертикальной осью

Windspire - вертикальная турбина высотой около 10 метров и шириной

около полутора метров, применима к использованию в городских

условиях (Рисунок 4).

Наиболее перспективными технологиями в ветроэнергетике станут те, что

позволят снизить зависимость их эффективности от размеров турбин,

как, например, Wind Harvester или Windspire .


Makani Airborne Wind Turbine


Altaeros Airborne Wind Turbine

Биоэнергетика

Несмотря на высокое распространение производства тепловой и электрической энергии из биомасс, технология выработки энергии из них имеет ряд проблем:

  • Необходимость земельных и водных ресурсов для выращивания, конкурирует с производством пищевых продуктов;
  • Вредные выбросы при сжигании (NOx, сажа, зола, CO, CO2);
  • Сезонный характер роста некоторых культур;
  • Проблемы масштабирования генерирующих мощностей.

Наиболее перспективные направления развития технологий в биоэнергетике:

  • Совместное сжигание смесей биомассы с традиционными видами топлива (наиболее дешевая технология на данный момент - Рисунок 6);
  • Использование новых видов топлива из биомасс, включая различные бытовые и промышленные отходы;
  • Переоборудование существующих генерирующих мощностей на углеводородном топливе под использование биомасс;
  • Повышение теплоотдачи пеллет биомассы за счет сушки;
  • Интегрированная газификация биомасс с топливными ячейками.


В приливной и волновойэнергетике используетсякинетическая энергия воды.Основное отличие состоитв том, что в приливнойэнергетике используетсяэнергия морских приливови отливов за счет перепадав уровне воды, тогда как вволновой энергетикеиспользуются водныетечения и колебания волн.

Основные барьеры на пути распространения данного вида альтернативной энергетики

  • Высокие капитальные затраты на строительство (от 2,5 до 7 млн. евро за 1 МВт установленной мощности);
  • Географическая привязка к береговой линии и удаленность от существующих электрических сетей;
  • Негативное влияние на окружающую среду;
  • Зависимость от природных явлений;
  • Дороговизна и сложность техобслуживания;
  • Быстрый износ генерирующего оборудования под воздействием воды.

Среди общих направлений технологических исследований в области приливной энергетики выделяются следующие:

Усовершенствование приливных плотин:

  • Повышение эффективности генераторов на приливных плотинах;
  • Улучшение антикоррозийных свойств материалов;

Использование приливного течения:

  • Генерация электроэнергии непосредственно от течения воды во время
  • приливов (а не от перепада в уровне воды между приливами и
  • отливами);
  • Исследования в области различных видов турбин (горизонтальных и
  • вертикальных) для преобразования энергии приливного течения;
  • Исследований новых, не турбинных технологий;

Модернизация фиксаторов преобразователей приливного течения:

Якорная стоянка на гравитационном фундаменте или забивных сваях, плавающие платформы, закрепленные с помощью причальных линий.

Наиболее перспективные новые технологии и разработки в области приливной энергетики:

  • Использование мостов в качестве приливных электростанций, например, проект компании Bluenergy (см.рис.);
  • Колеблющееся подводное крыло (применяет вместо вращающихся элементов плавники (крылья), которые приводятся в движение течением);
  • Системы с использованием трубки Вентури (например, Rotech Tidal Turbine – двусторонняя турбина с горизонтальной осью, расположенная внутри симметричной конической трубки Вентури, преобразует энергию океанического течения в электроэнергию);
  • Магнитогидродинамические системы (MHD) (Концептуальная технология, использующая криогенно охлажденную сверхпроводящую электромагнитную катушку, размещенную на морском дне, где проходящие приливные волны используются для выработки энергии).

В волновой энергетике большинство исследуемых технологий все еще находится на стадии разработки или экспериментальных испытаний:

  • Усовершенствование технологий осциллирующих водяных колонн (OWC) (например, снижение колебаний вырабатываемой электроэнергии за счет применения маховиков и силовой электроники);
  • Развитие технологии уровневых уловителей (point absorber) на плавучих буях (в т.ч. применение различных способов отбора мощности (механических, гидравлических, электромагнитных));
  • Усовершенствование технологий переливных турбинных генераторов типа WaveDragon (Повышение КПД и снижение колебаний вырабатываемой электроэнергии).

Среди новых и уже испытуемых технологий можно выделить следующие наиболее перспективные проекты:

  • Волновые аттенюаторы (например, Pelamis Wave Energy – преобразователь волновой энергии в виде змеевидных устройств, наполовину погруженных в воду - см. рис.)
  • Волновые генераторы на принципе обратного маятника (Inverted Pendulum, например, bioWAVE™, в котором ряд поплавков или лопастей взаимодействует с колеблющейся морской поверхностью (потенциальной энергией) и подводными течениями (кинетической энергией), конвертируя энергию волн в электричество специальным конвертирующим модулем);
  • Генераторы с жидким/газообразным рабочим телом (включая SDE Wave Power, использующий гидродинамическую энергию волн для приведения в движение пистонов в гидравлическом моторе или Archimedes Wave Swing-III ряд устройств из множества уловителей волновых колебаний на гибкой мембране, конвертирующих энергию волн в пневматическую энергию посредством сжатия воздуха в каждом устройств).

Электроэнергия играет важную роль в жизни и экономике каждой страны. Многие страны мира стараются эффективно получать, передавать и использовать такую энергию, и помощь в этом им окажут в электроэнергетике.

Инновации и их эффективность в электроэнергетике

Индустрия и промышленность, связанные с электроэнергетикой, имеют следующие особенности:

  • выработка ресурса основных частей и узлов электрооборудования происходит за 20, 30 и более лет;
  • для обновления или замены оборудования необходимо вложить большие средства;
  • вложенные средства окупаются долго.

Затраты предприятий, к которым относятся компании энергетического сектора, на научно-исследовательские работы невысоки. Тем важнее понять, что развитие отрасли и новые технологии в энергетике возможны за счет применения инновационных методов работы.

Наиболее интересные и современные инновации в энергетике

В атмосфере накапливается электричество, один из вариантов его использования — захват электрической энергии молний. Это обещающая технология, но пока еще мало разработанная.

Более продвинутая техника — плазменные генераторы, вариант магнитогидродинамического устройства. Опытно-промышленные установки появились в XX веке, с тех пор ведутся работы по их усовершенствованию и доработке.


Человечество ищет ответы на глобальные вопросы:

– что делать в связи с изменением климата и глобальным потеплением;

– где найти энергоресурсы, которые распределены крайне неравномерно и истощаются;

– как обеспечить энергетическую безопасность каждой страны и глобальную безопасность.

Ответы на эти глобальные вопросы могут быть получены в результате реализации новой энергетической стратегии. Основные направления будущего развития энергетики:

1. Переход от энергетики, основанной на ископаемом топливе, к бестопливной энергетике с использованием возобновляемых источников энергии.

2. Переход на распределённое производство энергии, совмещённое с локальными потребителями энергии.

3. Создание глобальной солнечной энергетической системы.

4. Замена нефтепродуктов и природного газа на жидкое и газообразное биотопливо, а ископаемого твёрдого топлива - на использование энергетических плантаций биомассы.

5. Замена автомобильных двигателей внутреннего сгорания на бесконтактный высокочастотный резонансный электрический транспорт.

6. Замена воздушных линий электропередач на подземные и подводные кабельные линии.

По всем указанным направлениям в ВИЭСХе проведены исследования, разработаны технологии и экспериментальные образцы, защищённые российскими патентами.

Солнечная энергетика – это самая быстрорастущая отрасль энергетики в мире с темпами роста 53% в год и объёмом производства в 2009 г. 12ГВт.

Солнечные электростанции (СЭС) с концентраторами в Калифорнии мощностью 354МВт работают с 1980 г. и замещают ежегодно 2млн. баррелей нефти (1 баррель – 159л).

Роль солнечной энергии в энергетике будущего определяется возможностями промышленного использования новых физических принципов, технологий, материалов и конструкций солнечных элементов, модулей и электростанций, разработанных в России.

Для того чтобы конкурировать с топливной энергетикой, солнечной энергетике необходимо выйти на следующие критерии:

КПД солнечных электростанций должен быть не менее 25%.

Срок службы солнечной электростанции должен составлять 50 лет.

Стоимость установленного киловатта пиковой мощности солнечной электростанции не должна превышать 2000долл.

Объём производства солнечных электростанций должен быть 100ГВт в год.

Производство полупроводникового материала для СЭС должно превышать 1 млн. т в год при цене не более 25долл./кг.

Круглосуточное производство электрической энергии солнечной энергосистемой.

Материалы и технологии производства солнечных элементов и модулей должны быть экологически чистыми и безопасными.

Рассмотрим, в какой степени цели и направления развития мировой солнечной энергетики отвечают вышеуказанным критериям.

В ГНУ ВИЭСХ разработана новая технология, материалы и технологическое оборудование для сборки солнечных фотоэлектрических модулей с увеличением срока службы солнечных электростанций в два раза с 20-25 лет до 40-50 лет. Новая технология повышает КПД за счёт снижения рабочей температуры модуля и позволяет создавать фотоприёмники концентрированного излучения с большим сроком службы.

Солнечный модуль изготовлен с применением нового типа заполнителя – модифицированного полисилоксанового геля, обеспечивающего улучшенные оптические параметры, расширенный диапазон эксплуатационных температур и удвоение срока службы модуля. Температурный диапазон эксплуатации: от -60 до +60оС. Предполагаемый срок эксплуатации модуля – более 40 лет.

Годовая экономия электроэнергии на производстве модулей мощностью 1МВт не менее 70560кВт/час. Увеличение объёма производства электроэнергии при эксплуатации СЭС за счёт увеличения срока службы с 20 до 40 лет составит 20 миллионов кВт-ч для СЭС 1МВт и 200 миллиардов кВт-ч на мировой объём выпуска 10 ГВт.

Разработка отмечена дипломом Президиума РАСХН как лучшая работа в Академии за 2009 год. Получены патенты РФ, аналогов в мире нет.

Разработана новая технология и конструкция, и организовано экспериментальное производство солнечных фотоэлектрических кремниевых модулей (СФКМ) с КПД до 24% для солнечных электростанций с концентраторами, которая позволяет снизить затраты кремния на единицу мощности СЭС по сравнению с существующей технологией в 500 – 1000 раз.

Состояние разработки: выпущена партия 100 СФКМ и проведены исследования СФКМ с концентраторами. Получен патент РФ и диплом Федеральной службы по патентам РФ о включении этой разработки в 100 лучших изобретений РФ (отбор из 42 000 патентов). Аналогов в мире нет.

Исследована система солнечного теплоснабжения зданий с помощью встроенных в стены солнечных коллекторов с вакуумными стеклопакетами (СКВС). Совместно с НПО «Плазма» разработана технология изготовления вакуумных стеклопакетов и организовано их экспериментальное производство.

Сопротивление теплопередачи СКВС толщиной 7мм с вакуумным зазором 100 мкм равно 1,2м2-°С/Вт, что соответствует сопротивлению теплопередаче кирпичной стены толщиной 0,65 м. Срок службы вакуумного стеклопакета 40 лет.

Облицовка фасадов зданий солнечными коллекторами с вакуумными стеклопакетами позволяет в средней полосе РФ в течение 8 месяцев, а в Южном федеральном округе круглогодично обеспечить солнечное теплоснабжение зданий.

Разработана компьютерная программа и проведены расчёты тепловой энергии, полученной от СКВС на фасаде здания в отопительный период.

Использование 7мм вакуумного стеклопакета в окнах зданий снижает потери на кондиционирование на 25-30%. На технологию и конструкцию вакуумного стеклопакета и его применение получено 15 патентов РФ. Аналогов за рубежом нет, за исключением Японии.

Современные системы передачи электрической энергии используют двух- и трёхпроводные линии, в которых электрическая энергия передаётся от генератора к приёмнику бегущими волнами тока, напряжения и электромагнитного поля. Основные потери обусловлены джоулевыми потерями на сопротивлении проводов, от протекания активного тока проводимости по замкнутому контуру от генератора к приёмнику и обратно.

Крупные энергетические компании во многих странах мира вкладывают гигантские средства и научные ресурсы в создание технологии высокотемпературной сверхпроводимости для снижения джоулевых потерь в линии.

Существует другой, вероятно, более эффективный способ снижения потерь, по крайней мере, в магистральных и межконтинентальных линиях электропередач: разработать регулируемые резонансные волноводные системы передачи электрической энергии на повышенной частоте 1-100кГц, которые не используют активный ток проводимости в замкнутой цепи. В волноводной однопроводниковой линии нет замкнутого контура, нет бегущих волн тока и напряжения, а есть стоячие (стационарные) волны реактивного ёмкостного тока и напряжения со сдвигом фаз 90°. За счёт настройки резонансных режимов, выбора частоты тока в зависимости от длины линии, можно создать в линии режим пучности напряжения и узла тока (например, для полуволновой линии). При этом, из-за отсутствия активного тока, сдвига фаз между стоячими волнами реактивного тока и напряжения 90° и наличия узла тока в линии, отпадает необходимость и потребность в создании в такой линии режима высокотемпературной проводимости, а джоулевые потери становятся незначительными, в связи с отсутствием замкнутых активных токов проводимости в линии и незначительными величинами незамкнутого ёмкостного тока вблизи узлов стационарных волн тока в линии.

Изменяется и механизм передачи электрической энергии. В обычных двух-трёхпроводных линиях при включении генератора в линии возникают бегущие волны тока, которые должны достигнуть нагрузки и вернуться к генератору. В резонансной однопроводниковой волноводной линии при наличии стационарных волн незамкнутого электрического тока электрическая энергия присутствует в любой точке линии.

Новая физика электрических процессов, связанная с использованием не активного, а реактивного тока, позволит решить три главные проблемы современной электроэнергетики:

– создание сверхдальних линий передач с низкими потерями без использования технологии сверхпроводимости;

– увеличение пропускной способности линий;

– замена воздушных линий на кабельные однопроводниковые волноводные линии и снижение сечения токонесущей жилы кабеля в 20-50 раз.

В экспериментальной резонансной однопроводниковой системе передачи электрической энергии, установленной в экспериментальном зале ВИЭСХ, мы передавали электрическую мощность 20кВт при напряжении 6,8кВ на расстоянии 6м по медному проводнику диаметром 80мкм при комнатной температуре, при этом эффективная плотность тока в проводнике составила 600А/мм2, а эффективная плотность мощности – 4МВт/мм2. Из других применений резонансной электроэнергетики, основанной на незамкнутых токах, следует выделить беспроводной офис, бесконтактный высокочастотный электротранспорт, создание местных энергетических систем с использованием возобновляемых источников энергии, соединение оффшорных морских ВЭС с береговыми подстанциями, электроснабжение потребителей на островах и в зонах вечной мерзлоты, пожаробезопасные однопроводниковые системы уличного освещения и освещения зданий, домов престарелых, музеев, больниц и пожароопасных производств.

Подготовлены предложения по разработке энергоэффективного гибридного трактора с беспроводной системой зарядки аккумуляторов, электрической мощностью 50-100кВт, экономией дизельного топлива 30% и снижением уровня выбросов в 5 раз.

Планируется изготовление и испытание опытного образца и организация серийного производства.

Будет выполнена разработка электрического автомобиля с беспроводной системой зарядки аккумуляторов, электрическая мощность которой 50-100кВт. Грузоподъёмность 1,5т. 100% экономия топлива. Отсутствие вредных выбросов. Увеличение эффективности использования первичной энергии в 2 раза:

– отсутствие двигателя внутреннего сгорания и топливных баков;

– отсутствие химических аккумуляторов;

– отсутствие топливных элементов, системы накопления и хранения водорода;

– неограниченная дальность пробега;

– возможность полной автоматизации вождения на автострадах.

Используется бесконтактная резонансная система электроснабжения с однопроводниковой линией электропередачи, работающей на повышенной частоте.

Планируется изготовление опытной партии, проведение испытаний и организация серийного производства.

Для сомневающихся в существовании незамкнутых электрических токов приводим высказывания двух выдающихся учёных в области электротехники и электро-энергетики.

«Исключительная трудность согласования законов электромагнетизма с существованием незамкнутых электрических токов – одна из причин среди многих, почему мы должны допустить существование токов, создаваемых изменением смещения» (Д. Максвелл).

«В 1893 г. я показал, что нет необходимости использовать два проводника для передачи электрической энергии... Передача энергии через одиночный проводник без возврата была обоснована практически» (Н.Тесла, 1927 г.).

«Эффективность передачи может быть 96 или 97 процентов, и практически нет потерь...

Когда нет приёмника, нет нигде потребления энергии» (Н. Тесла, 1917 г.).

«Мои эксперименты показали, что на поддержание электрических колебаний по всей планете потребуются несколько лошадиных сил» (Н. Тесла, 1905 г.).


Н. Тесла ответил и на вопрос, который часто задают нам: почему электроэнергетика не восприняла его идеи? «Мой проект сдерживался законами природы. Мир не был готов к нему. Он слишком обогнал время. Но те же самые законы восторжествуют в конце и осуществят его с великим триумфом» (Н. Тесла, 1919 г).

За 20 лет исследований российские учёные получили более 20 патентов на технологии и оборудование резонансной электроэнергетики, результаты исследований опубликованы в книге «Резонансные методы передачи и применения электрической энергии» (3-е изд., 2008 г., ГНУ ВИЭСХ, 350 стр.).

Резонансная электроэнергетика нуждается в поддержке государства для реализации пилотных и демонстрационных проектов и ждёт нового Моргана, банкира, который 100 лет назад финансировал работы Н. Тесла.

Особенно большое значение для сельского хозяйства имеет технология переработки биомассы, растительных и древесных отходов, навоза, торфа в жидкое топливо и газ посредством термохимической переработки и метаногенеза.

Энергетические установки, использующие биомассу, отходы могут дать столько же энергии, сколько все атомные станции в России, и они имеют почти нулевые выбросы диоксида углерода и серы, то есть являются экологически чистыми. Получение и использование этого топлива, а также смесевого и модифицированного топлива позволит пополнить энергобаланс сельских предприятий и регионов и в значительной мере снизить зависимость от централизованных закупок ископаемого топлива и электроэнергии.

Осуществляется разработка технологии и создание оборудования высокоскоростной термохимической переработки древесных опилок, угля, торфа и сельскохозяйственных отходов с целью получения пиролизного газа, электроэнергии и теплоты.

Производительность по сырью 1т/сутки. Выход пиролизного газа более 50% от массы сырья обеспечивает работу газопоршневой машины с электрогенератором электрической мощностью 100кВт и тепловой мощностью 100кВт.

Завершается разработка технологии и оборудования для получения смесевого композиционного дизельного топлива. Изготовлены и проведены испытания двух типов оборудования: производительностью 1-3т/ч и 0,2т/ч. Экономия дизельного топлива 30%.

Удельная теплота сгорания 10300ккал/кг, цетановое число – 51, температура застывания -36оС. Годовой экономический эффект при объёме потребления 6 млн. т – 30 млрд. руб. Снижение вредных выбросов в 2 раза. В планах изготовление опытной партии, испытания топлива на МИС, организация производства оборудования 100 комплектов в год.

Инновационная и инвестиционная деятельность является важнейшей составляющей научно-технического прогресса. Она открывает возможности практического воплощения новых идей и реализации их в инвестиционных проектах. На пути реализации инноваций и инвестиций – психологические, экономические, технологические, законодательные, информационные барьеры.

Неучтённые риски, недоверие, боязнь неудачи, ошибки в ряде случаев не позволяют последовательно довести идею до реального воплощения.

Экономические барьеры связаны, как правило, с нехваткой средств на воплощение идеи или более высокой стоимостью предлагаемой технологии или техники по сравнению с существующей на сегодняшний день, из-за недооценки ряда показателей (например, экономических преимуществ, качества, надёжности или перспектив снижения стоимости).

Технологические барьеры могут быть преодолены при разработке и освоении новых, менее затратных и более эффективных технологий, что будет способствовать снижению и экономических барьеров.

Законодательные барьеры связаны с отсутствием законодательных и нормативных актов, стимулирующих инновационную и инвестиционную деятельность. Например, в энергетике России нет нормативных актов и экономических регуляторов, обеспечивающих поставку и продажу электроэнергии в общую энергосистему малыми и независимыми производителями.

В процессе выбора и реализации инновационных предложений важнейшим является полнота и доступность информации, включающей технико-экономическое обоснование и бизнес-планы. Для преодоления информационного барьера следует сопровождать все инновационные предложения бизнес-планами с анализом рисков при их реализации для последующего издания, широкого распространения в Интернет и на конференциях.

Необходима государственная поддержка в создании благоприятных условий для реализации инвестиционных и инновационных проектов и их использования в производстве.

При реализации инновационных пилотных проектов важным является определение тех регионов, где условия реализации конкретных инноваций более благо-приятны.

Например, при реализации автономных энергосистем на базе возобновляемых источников энергии следует выбрать регионы с благоприятными солнечными, ветровыми или другими ресурсами, а также регионы, где тарифы на традиционное энергообеспечение – повышенные.

Для стимулирования и поддержки НИОКР и последующей инновационной деятельности следовало бы в пределах выделяемого финансирования разрешить государственным научным учреждениям оплачивать расходы на подачу и поддержание патентов РФ, участие сотрудников в выставках и конференциях, подключение и использование Интернет, приобретение компьютерной техники, научных приборов, программного обеспечения, изготовление макетных и экспериментальных образцов, реализацию демонстрационных проектов.

Энергетика является одной из областей экономики, в которой инновации внедряются с высокой интенсивностью. Именно получение более дешевой энергии из возобновляемых источников без ущерба окружающей среде способно дать новый толчок в развитии бизнеса в разных отраслях промышленности. Современные технологии в энергетике способны менять развитие традиционных отраслей промышленности: автомобилестроения, нефтегазовой добычи и переработки, металлургии, авиационной и железнодорожной промышленности. Кроме этого более дешевые виды электроэнергии могут качественно улучшить условия жизни человека.

Новейшие инновации в энергетическом комплексе

Разные страны развитого мира активно проводят работу по внедрению новейших инноваций в свою энергетику. В качестве альтернативных источников используются;

  • солнечный свет;
  • ветер;
  • ударная сила волны;
  • живые микроорганизмы, из которых делают биотопливо и субстраты, уничтожающие нефтяные и химические загрязнения окружающей среды.

Самыми инновационными видами современных технологий в энергетике являются:

  • фрекинг, который использует силу ударной волны для добычи полезных ископаемых, в том числе и нефти;
  • повышение нефтеотдачи от старых месторождений;
  • методика использования бактерий для уничтожения нефтяных пятен на воде и на земле;
  • использование вместо бензина биотоплива в городских автомобилях.

Использование силы ударной волны при добыче нефти и газа способно совершить настоящую революцию в нефтедобыче. Такие современные технологии в энергетике способны переориентировать добычу нефти традиционным способом на получение ее из сланцевых слоев. Использовать силу взрывной волны для разрыва сланцевых пластов, залегающих на большой глубине впервые предложила индийская нефтедобывающая компания. Такая технология позволила существенно сократить расходы на добычу, полностью устранив из технологического процесса воду. Традиционная технология гидроразрыва пластов требовала использования большого количества воды. В условиях экономии пресной воды как самого необходимого условия для жизни технология фрекинга позволяет отказаться от использования пресной воды в технических целях, что существенно улучшает состояние окружающей среды, снижая уровень ее загрязнения.

Повышение извлечения нефти из старых скважин позволяет сократить издержки отрасли и улучшить сохранность окружающей среды. Использование технологии третичной обработки пластов дает возможность делать старые скважины рентабельными. В этой технологии используется углекислый газ, который позволяет увеличить скорость нефтяного потока и снижает уровень его вязкости. Для технологии данного типа можно использовать промышленный углекислый газ, что позволяет улучшить состояние воздуха в городах.

Бактерии могут безопасно удалять нефтяные разливы на море, сохраняя таким образом живой мир океана и сокращая расходы на очистку морей традиционным способом. Микроорганизмы, которые удаляют нефтяные пятна с помощью природного окисления можно использовать в разных мировых регионах для очищения морей от нефтяного загрязнения.

Использование биотоплива поможет сделать города более чистыми и сократит расходы на производство бензина, так как для его производства обычно используется очень дешевые легко возобновляемое сырье.

Энергетические инновации в промышленности

Активно применяются сегодня и другие виды инноваций, такие как энергия ветра и солнца, которая перерабатывается специальным способом в электричество. Такие современные технологии в энергетике уже активно применяются в ряде европейских стран: Германии, Швеции, Голландии, Италии, Испании.

Активно используются и технология тепловых насосов, которая была известна еще сто лет назад. Такой способ трансформации низких температур в тепловую энергию способен существенно снизить затраты на отопление жилых и промышленных сооружений.

В промышленности используются с недавнего времени технологии сжиженных углеводородов, которые заменяют дизельное топливо. Это позволяет уменьшить загрязнение окружающей среды в промышленных объемах и обеспечивает оптимизацию расходов предприятия. На сегодняшний день топливо из сжиженных углеводородов прошло испытание и на практике доказала свою эффективность.

Еще одна успешно внедряемая в жизнь современная технология в энергетике – это использование светодиодных ламп, которые позволяют сократить потребление электричества и расходы на освещение.

К перспективным направлениям относятся осмостанции, которые используют для получения электроэнергии соленую морскую воду. В основе технологии лежит осмос-эффект, который используется деревьями для получения питательных соков из земли. Использование разницы давления пресной и соленой воды на электростанциях создает осмос эффект, который заставляет вращать турбины и вырабатывать электричество. Это гораздо дешевле, чем строительство гидроэлектростанций.

Похожие статьи

  • Золотые кони хана батыя - легендарные сокровища, точное местонахождение

    из Энциклопедии чудес, загадок и тайн ЗОЛОТЫЕ КОНИ ХАНА БАТЫЯ - легендарные сокровища, точное местонахождение которых до сих пор неизвестно. История коней примерно такова: После того, как хан Батый разорил Рязань и Киев, он...

  • Какую говядину лучше варить

    Покупка мяса - это самая существенная часть продовольственного бюджета любой семьи (за исключением вегетарианской). Кто-то предпочитает свинину, кто-то птицу, однако наиболее полезной и питательной считается говядина. Это мясо не самое...

  • Какие социальные сети существуют для общения с друзьями и родственниками

    Сегодня соцсети настолько прочно укоренились в нашей жизни, что состав пятерки самых популярных социальных площадок практически не меняется из года в год. Тем не менее, масштабы проникновения и использования этих соцсетей отличаются в...

  • Обзор самых новых лекарств от рака

    Предлагаю вашему вниманию простые, проверенные временем, средства народной медицины, которые помогут при онкологических заболеваниях .Звездчатка (мокрица). Сок растения, крепкий настой и отвар применяется для местных ванн и примочек при...

  • Самые действенные способы защиты от сглаза, порчи, колдовства, зависти

    Признаками магического нападения могут являться: любые физические, психоэмоциональные отклонения без особой на-то причины. С целью защиты в отражения удара в той же самой магии выработаны довольно мощные приемы, которые отрабатывались не...

  • Что значит "поставить крест"

    О каком кресте говорил Иисус своим ученикам? Куда они должны были следовать со своим крестом? Что такое крестный ход? Что означают выражения: «Креста на тебе нет!» или «Поставить на нем крест!» ВСЕСЛАВЪ (ГЛОБА Игорь Александрович),...