Положительные и отрицательные числа, определение, примеры. Когда появились отрицательные числа

Состоящее из положительных (натуральных) чисел, отрицательных чисел и нуля.

Все отрицательные числа, и только они, меньше, чем нуль. На числовой оси отрицательные числа располагаются слева от нуля. Для них, как и для положительных чисел , определено отношение порядка, позволяющее сравнивать одно целое число с другим.

n -n , которое дополняет n до нуля: n + (− n ) = 0 . Оба числа называются противоположными друг для друга. Вычитание целого числа a равносильно сложению с противоположным для него: -a .

Свойства отрицательных чисел

Отрицательные числа подчиняются практически тем же правилам, что и натуральные, но имеют некоторые особенности.

Исторический очерк

Литература

  • Выгодский М. Я. Справочник по элементарной математике. - М.: АСТ, 2003. - ISBN 5-17-009554-6
  • Глейзер Г. И. История математики в школе. - М.: Просвещение, 1964. - 376 с.

Ссылки

Wikimedia Foundation . 2010 .

Смотреть что такое "Отрицательные числа" в других словарях:

    Действительные числа, меньшие нуля, например 2; 0,5; π и т. п. См. Число … Большая советская энциклопедия

    - (величины). Результат последовательных сложений или вычитаний не зависит от порядка, в котором эти действия производятся. Напр. 10 5 + 2 = 10 +2 5. Здесь переставлены не только числа 2 и 5, но и знаки, стоящие перед этими числами. Согласились… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    числа отрицательные - Числа в бухгалтерском учете, которые пишутся красным карандашом или красными чернилами. Тематики бухгалтерский учет … Справочник технического переводчика

    ЧИСЛА, ОТРИЦАТЕЛЬНЫЕ - числа в бухгалтерском учете, которые пишутся красным карандашом или красными чернилами … Большой бухгалтерский словарь

    Множество целых чисел определяется как замыкание множества натуральных чисел относительно арифметических операций сложения (+) и вычитания (). Таким образом, сумма, разность и произведение двух целых чисел есть снова целые числа. Оно состоит из… … Википедия

    Числа, возникающие естественным образом при счёте (как в смысле перечисления, так и в смысле исчисления). Существуют два подхода к определению натуральных чисел числа, используемые при: перечислении (нумеровании) предметов (первый, второй,… … Википедия

    Коэффициенты Е n в разложении Рекуррентная формула для Э. ч. имеет вид (в символической записи, (E + 1)n + (Е 1)n=0, E0 =1. При этом Е 2п+1=0, E4n положительные, E4n+2 отрицательные целые числа для всех n=0, 1, . . .; E2= 1, E4=5, E6=61, E8=1385 … Математическая энциклопедия

    Отрицательное число элемент множества отрицательных чисел, которое (вместе с нулём) появилось в математике при расширении множества натуральных чисел. Цель расширения: обеспечить выполнение операции вычитания для любых чисел. В результате… … Википедия

    Арифметика. Роспись Пинтуриккьо. Апартаменты Борджиа. 1492 1495. Рим, Ватиканские дворцы … Википедия

    Ганс Себальд Бехам. Арифметика. XVI век Арифметика (др. греч. ἀ … Википедия

Книги

  • Математика. 5 класс. Учебная книга и практикум. Положительные и отрицательные числа. В 2 частях. Часть 2. ФГОС, Гельфман Э.Г.. Учебная книга и практикум для 5 класса входят в состав УМК по математике для 5–6 классов, разработанный авторским коллективом под руководством Э. Г. Гельфман и М. А. Холодной в рамках проекта…

В рамках натуральных чисел можно вычесть только меньшее число из большего, а переместительный закон не включает вычитание - например, выражение 3 + 4 − 5 {\displaystyle 3+4-5} допустимо, а выражение с переставленными операндами 3 − 5 + 4 {\displaystyle 3-5+4} недопустимо...

Добавление к натуральным числам отрицательных чисел и нуля делает возможной операцию вычитания для любых пар натуральных чисел. В результате такого расширения получается множество (кольцо) «целых чисел ». При дальнейших расширениях множества чисел рациональными или вещественными числами для них тем же путём получаются соответствующие отрицательные значения. Для комплексных чисел упорядоченность не определена, и понятия «отрицательное число» не существует.

Все отрицательные числа, и только они, меньше, чем ноль. На числовой оси отрицательные числа располагаются слева от нуля. Для них, как и для положительных чисел, определено отношение порядка, позволяющее сравнивать одно целое число с другим.

Для каждого натурального числа n существует одно и только одно отрицательное число, обозначаемое -n , которое дополняет n до нуля:

n + (− n) = 0. {\displaystyle n+\left(-n\right)=0.}

Оба числа называются противоположными друг для друга. Вычитание целого числа a из другого целого числа b равносильно сложению b с противоположным для a :

b − a = b + (− a) . {\displaystyle b-a=b+\left(-a\right).}

Пример: 25 − 75 = − 50. {\displaystyle 25-75=-50.}

Свойства отрицательных чисел

Отрицательные числа подчиняются практически тем же алгебраическим правилам, что и натуральные, но имеют некоторые особенности.

  1. Если любое множество положительных чисел ограничено снизу, то любое множество отрицательных чисел ограничено сверху.
  2. При умножении целых чисел действует правило знаков : произведение чисел с разными знаками отрицательно, с одинаковыми - положительно.
  3. При умножении обеих частей неравенства на отрицательное число знак неравенства меняется на обратный. Например, умножая неравенство 3 −10.

При делении с остатком частное может иметь любой знак, но остаток, по соглашению, всегда неотрицателен (иначе он определяется не однозначно). Например, разделим −24 на 5 с остатком:

− 24 = 5 ⋅ (− 5) + 1 = 5 ⋅ (− 4) − 4 {\displaystyle -24=5\cdot (-5)+1=5\cdot (-4)-4} .

Вариации и обобщения

Понятия положительных и отрицательных чисел можно определить в любом упорядоченном кольце. Чаще всего эти понятия относятся к одной из следующих числовых систем:

Приведенные выше свойства 1-3 имеют место и в общем случае. К комплексным числам понятия «положительный» и «отрицательный» неприменимы.

Исторический очерк

Древний Египет, Вавилон и Древняя Греция не использовали отрицательных чисел, а если получались отрицательные корни уравнений (при вычитании), они отвергались как невозможные. Исключение составлял Диофант, который в III веке уже знал правило знаков и умел умножать отрицательные числа. Однако он рассматривал их лишь как промежуточный этап, полезный для вычисления окончательного, положительного результата.

Впервые отрицательные числа были частично узаконены в Китае, а затем (примерно с VII века) и в Индии, где трактовались как долги (недостача), или, как у Диофанта, признавались как временные значения. Умножение и деление для отрицательных чисел тогда ещё не были определены. Полезность и законность отрицательных чисел утверждались постепенно. Индийский математик Брахмагупта (VII век) уже рассматривал их наравне с положительными.

В Европе признание наступило на тысячу лет позже, да и то долгое время отрицательные числа называли «ложными», «мнимыми» или «абсурдными». Первое описание их в европейской литературе появилось в «Книге абака» Леонарда Пизанского (1202 год), который трактовал отрицательные числа как долг. Бомбелли и Жирар в своих трудах считали отрицательные числа вполне допустимыми и полезными, в частности, для обозначения нехватки чего-либо. Даже в XVII веке Паскаль считал, что 0 − 4 = 0 {\displaystyle 0-4=0} , так как «ничто не может быть меньше, чем ничто» . Отголоском тех времён является то обстоятельство, что в современной арифметике операция вычитания и знак отрицательных чисел обозначаются одним и тем же символом (минус), хотя алгебраически это совершенно разные понятия.

В XVII веке, с появлением аналитической геометрии, отрицательные числа получили наглядное геометрическое представление на числовой оси. С этого момента наступает их полное равноправие. Тем не менее теория отрицательных чисел долго находилась в стадии становления. Оживлённо обсуждалась, например, странная пропорция 1: (− 1) = (− 1) : 1 {\displaystyle 1:(-1)=(-1):1} - в ней первый член слева больше второго, а справа - наоборот, и получается, что большее равно меньшему («парадокс

1. Вопросы, связанные с отрицательными числами являются одним из трудных вопросов для освоения учащимися.

История развития математики показывает, что отрицательные числа значительно труднее дались человеку, это связано с тем, отрицательные числа менее связаны с практической жизнью.

Отрицательные числа возникли в связи с необходимостью выполнения с известными числами. Математики древней Греции не признали отрицательных чисел, они не могли дать им конкретного толкования. Лишь работу Диофанта (3 в. н.э) встречаются преобразования, которые приводят к необходимости выполнения операций над отрицательными числами.

Отрицательные числа появляются лишь в зачаточной форме. Довольно широкое распределение они получили в работах индийских ученых. Положительные числа они называли настоящими, а отрицательные- не настоящими- ложными. Отрицательные числа рассматривали, как долг, а положительные числа как наличные деньги.

Первые правила сложения и вычитания принадлежат индийским ученым. И связаны с трактовкой этих чисел как имущество и долг.

Ученые долго не могли объяснить, дать трактовку произведения двух отрицательных чисел. Почему произведение 2-х долгов есть имущество. Такие ученые как Эйлер, Коми давали свое объяснение правилу произведения чисел, но они приводили к ошибочным результатам.

Немецкий ученый М. Штифель впервые в 1544 г. дал определение отрицательных чисел, как чисел меньших нуля.

Впервые математическую интерпретацию дал Рене Декарт в 1737 г. в книги «Аналитическая геометрия». Отрицательные числа он рассматривал как самостоятельное, расположенное на оси ОХ влево от начало координат. Однако он эти числа назвал ложными. Всеобщее признание отрицательные числа получили в первой половине 21 века, так отрицательные числа вошли в историю математики.

2. Различные приемы введения отрицательных чисел. В учебной литературе можно отметить 3 способа введения отрицательных чисел.

1) Рассматриваются случаи, когда вычисление на множестве положительных чисел ложно.

2) Рассматривают векторы расположенные на одной прямой, необходимость охарактеризовать не только их длину, но и направление приводит к понятию положительных и отрицательных чисел.

3) Введение отрицательных чисел посредством расположения изменяющихся величин в противоположных направлениях.

Методика введения отрицательного числа.

Прежде чем дать понятие об отрицательном числе необходимо показать на конкретных примерах , что известно уч-ся чисел недостаточно для характеристики положения точки на прямой к началу отсчета.

На достаточном количестве примеров надо показать неудобства понятия типа вправо или влево, вверх или вниз начертить числовую ось. Необходимо отложить начало отсчета и чтоб для определенности таких шкал, которые находятся вправо со знаком плюс, влево с противоположным знаком- минус.

В учебнике рассматривается достаточное число примеров, показывающих о целесообразности использования определенных знаков для обозначения направления противоположности движения. Для понятия введения отрицательного числа необходимо пользоваться демонстративным термометром и другими пособиями.

Знакомству с противоположными числами способствует изучение центра симметрии.

Понятие о противоположных числах связывается симметричными точками. В тоже время введение этого понятия основывается с геометрическим истолкованием положительных и отрицательных чисел.

В пункте противоположных чисел вводится определение целых чисел. Натуральные числа, противоположные числа, нуль- называют целыми числами. Модуль числа- понятие модуль числа дает от начала отсчета до точки соответствующему числу. Следует обратить внимание учащихся как мотивировать определение модуля числа.

В учебниках понятие модуля числа вводится путем рассмотрения примеров, поясняют как находить модуль числа. Поясняется, что модуль числа не может быть отрицательным ибо модуль числа это расстояние- обращается внимание, что для положительного числа модуль равен самому числу. Модуль отрицательного числа равен противоположному числу.

Сравнение чисел.

Соотношения равенства и неравенства между положительными и отрицательными числами вводится по определению, они не могут быть получены путем доказательства, причем очень важно показать учащимся целесообразность определения на конкретных примерах и геометрических образах.

Учащиеся должны на столько прочно усвоить расположение чисел на числовой прямой, чтобы это могло служить основным средством сравнения чисел. Иногда возникают трудности в сравнении отрицательных чисел, чтобы преодолеть их, необходимо рассмотреть их на числовой прямой.

Действия над отрицательными и положительными числами.

Основное, что надо учитывать учителю при рассмотрении этого материала – это действия сложения и вычитания над положительными и отрицательными числами вводится по определению, причем формулировки этих определений должны включать в себя ранее известные учащимся понятия об этих действиях. Вычитание и деление определяются как обратные сложению и умножению.

В учебнике отдельно дается определение действия сложения чисел с разными знаками, формулировки этих правил содержат указание на следующие действия. В учебнике большое время уделяется к тому как подойти к действию сложению. Основное внимание уделяется к рассмотрению конкретных задач, обращаясь при этом к координатной прямой.

Каким бы путем не вводилось правило сложение учащимся должно быть ясно, что ничто не доказывается при рассмотрении следующих примеров.

Примеры признаны лишь иллюстрировать целесообразность правил. Учащиеся должны овладеть навыками выполнения сложения 2-х отрицательных чисел с разными знаками, противоположных чисел, нуля с положительными и отрицательными числами.

Рассматривая свойства действий важно показать учащимся, что при установленных определениях действий сложения и вычитания чисел сохраняется все те законы которые имели место для положительных чисел.

Учащимся дается формулировка переместительного и сочетательного законов запись каждого из них с помощью букв.

Вычитание отрицательных чисел определяются как действие обратное сложению. Вычитание сводится к прибавлению противоположного числа.

Умножение положительных и отрицательных чисел представляет наибольшую трудность, трудность заключается в том, что учащейся испытывают потребность в доказательстве правил знаков при умножение, а учитель должен убедить учащихся, что такого доказательства нельзя искать или требовать, таким образом действие умножения вводится по определению, которое можно ввести по разному и по разному истолковать правило знаков. Сложения и умножения имеют много общего, однако трактовка правил умножения вызывает больше трудности.

Рассмотрим объяснения правил умножения является рассмотрение конкретных задач, решение которых требует вычисление по формуле а в, при различных а и в. недостатком этого метода является, то что они доказывают правило умножения.

Многие авторы придерживаются пути, когда в начале дается формулировка правил умножения, затем оно поясняется на примерах, задачах. Учащийся убеждаются на конкретном математическом в практичной целесообразности введенного определения. обычно в учебниках формулировки правил умножения чисел с разными знаками и правил умножения натуральных чисел представляет расписания рядов примеров.

При этом используется положение о том, что если изменить знак одного из множителей, то изменится знак произведения.

Правило формулируется удобным для использования вида. Необходимо обратить внимание учащихся на условия равенство произведения нулю.

Деление положительных, отрицательных чисел рассматривается как действие обратное умножению. Учащемуся сообщается, что деление положительных и отрицательных чисел имеет тот же смысл, что и деление положительных чисел. Важно обратить внимание на законы вычисления и умножения выражений.

Так же как и в случая сложения, правило сложения и умножения натуральных чисел может быть выведены из умножения чисел. Считая, что правило знаков для суммы известно.

В 6 классе в теме рациональные числа вводятся памяти отрицательные числа, которое может быть записано в виде дроби. Расписывается множество рациональных чисел можно сбить внимание, что когда выполнимо:, +, *, - на число не равное нулю.

При вычитании или выполни действий учащийся получают числа того же множества и это множество обладает свойством замкнутости по отношению к действиям первой и второй степени. Для сложения справедливы переместительный и сочетательный законы имеется нейтральный элемент, имеется противоположный элемент.

Для умножения справедливы первый распределительный и сочетательный закон, имеется нейтральный элемент 1, противоположный элемент ().

Практическое занятие №2

Тема: Изучение функции в ШКМ

1. Методика введения понятия функции.

2. Методика изучения отдельных функций

3. Виды функций, изучаемых в основной школе

Литература: , . Дополнительная литература I.

В этом материале мы объясним, что такое положительные и отрицательные числа. После того, как будут сформулированы определения, мы покажем на примерах, что это такое, и раскроем основной смысл этих понятий.

Yandex.RTB R-A-339285-1

Что такое положительные и отрицательные числа

Для того чтобы объяснить основные определения, нам понадобится координатная прямая. Она будет расположена горизонтально и направлено слева направо: так будет удобнее для понимания.

Определение 1

Положительные числа – это те числа, которые соответствуют точкам в той части координатной прямой, которая расположена справа от начала отсчета.

Отрицательные числа – это те числа, которые соотносятся с точками в части координатной прямой, расположенной с левой стороны от начала отсчета (нуля).

Нуль, от которого выбираем направления, сам по себе не относится ни к отрицательным, ни к положительным числам.

Из данных выше определений следует, что положительные и отрицательные числа образуют некие множества, противоположные друг другу (положительные противопоставляются отрицательным, и наоборот). Ранее мы об этом уже упоминали в рамках статьи о противоположных числах.

Определение 2

Мы всегда записываем отрицательные числа с минусом.

После того, как мы ввели основные определения, мы можем без труда привести примеры. Так, к положительным относятся любые натуральные числа – 1 , 9 , 134 345 и др. Положительные рациональные числа – это, например, 7 9 , 76 2 3 , 4 , 65 и 0 , (13) = 0 , 126712 ... и так далее. К положительным иррациональным числам относится число π , число e , 9 5 , 809 , 030030003 … (это так называемая бесконечная непериодическая десятичная дробь).

Приведем примеры отрицательных чисел. Это - 2 3 , − 16 , − 57 , 58 − 3 , (4) . Иррациональные отрицательные числа – это, например, минус пи, минус e и др.

Можно ли сразу сказать, что значение числового выражения log 3 4 - 5 является отрицательным числом? Ответ неочевиден. Нам придется выразить это значение десятичной дробью и потом посмотреть (подробнее см. в материале о сравнении действительных чисел).

Для того чтобы уточнить, что число положительное, перед ним иногда ставят плюс, так же, как и перед отрицательным – минус, но чаще всего он опускается. Не забывайте, что + 5 = 5 , + 1 2 3 = 1 2 3 , + 17 = 17 и так далее. По сути, это разные обозначения одного и того же числа.

В литературе также можно встретить определения положительных и отрицательных чисел, данные на основе наличия у них того или иного знака.

Определение 3

Положительное число – это число, имеющее знак плюс, а отрицательное – имеющее знак минус.

Есть также определения, основанные на положении данного числа относительно нуля (вспомним, что на правой стороне координатной прямой расположены большие числа, а на левой - меньшие).

Определение 4

Положительные числа – это все числа, значение которых больше нуля. Отрицательные числа – это все числа, меньшие нуля.

Выходит, что нуль является своеобразным разделителем: он отделяет отрицательные числа от положительных.

Отдельно остановимся на том, как правильно читать записи положительных и отрицательных чисел, хотя, как правило, с этим не возникает особых проблем. Для отрицательных чисел мы всегда озвучиваем минус, т.е. - 1 2 5 – это «минус одна целая две пятых».

В случае положительных чисел мы озвучиваем плюс только тогда, когда он явно указан в записи, т.е. + 7 – это «плюс семь». Названия математических знаков неправильно склонять по падежам. Например, верно будет прочесть фразу a = - 5 как « а равно минус пяти», а не «минусу пяти».

Основной смысл положительных и отрицательных чисел

Мы уже дали основные определения, но для того, чтобы делать верные подсчеты, необходимо понять сам смысл положительности или отрицательности числа. Попробуем помочь вам это сделать.

Положительные числа, то есть те, которые больше 0 , мы рассматриваем как прибыль, прибавку, увеличение количества чего-либо, а отрицательные – недостаток, убыток, расход, долг. Приведем примеры:

У нас есть 5 любых предметов, например, яблок. Цифра 5 – положительная, она указывает на то, что у нас что-то есть, мы обладаем некоторым количеством реально существующих предметов. А как тогда рассматривать - 5 ? Оно может, например, значить, что мы должны отдать кому-то пять яблок, которых у нас в данное время нет.

Проще всего это понять на примере денег: если у нас есть 6 , 75 тыс. рублей, то наш доход положительный: нам дали денег, и они у нас есть. В то же время в кассе эти расходы указываются как - 6 , 75 , то есть для них это убыток.

На градуснике рост температуры на 4 , 5 значений можно описать как + 4 , 5 , а снижение, в свою очередь, как - 4 , 5 . В приборах, предназначенных для измерения, часто используются положительные и отрицательные числа, поскольку с помощью них удобно отображать изменения величин. Например, в термометре отрицательные числа указываются синим цветом – это падение, холод, уменьшение тепла; положительные же отмечены красным – это цвет огня, роста, увеличения тепла. Эти цвета очень часто используются для записи таких чисел, т.к. они очень наглядны – с их помощью всегда можно четко выделить приход и расход, прибыток и убыток.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Мы знаем, что если сложить два или несколько натуральных чисел, то в результате получим натуральное число. Если перемножать натуральные числа между собой, то в результате всегда получаются натуральные числа. А какие числа будут в результате, если из одного натурального числа вычесть другое натуральное число? Если из большего натурального числа вычесть меньшее, то результат тоже будет натуральным числом. А какое число будет, если из меньшего числа вычесть большее? Например, если из 5 вычесть 7. Результат такого действия уже не будет натуральным числом, а будет числом меньше нуля, которое мы напишем как натуральное, но со знаком «минус», так называемым, отрицательным натуральным числом. На этом уроке мы познакомимся с отрицательными числами. Поэтому мы расширяем множество натуральных чисел, добавляя к нему «0» и целые отрицательные числа. Новое расширенное множество будет состоять из чисел:

…-6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6…

Эти числа называются целыми. Следовательно, результат нашего примера 5 -7 = -2 будет целым числом.

Определение. Целые числа – это натуральные, отрицательные натуральные и число «0».

Изображение этого множества мы видим на градуснике для измерения температуры на улице.

Температура может быть с «минусом», т.е. отрицательной, может быть с «плюсом» т.е. положительной. Температура 0 градусов не положительная не отрицательная, число 0 – граница, которая отделяет положительные числа от отрицательных.

Изобразим целые числа на числовой оси.

Рисунок оси

Мы видим, что на числовой оси существует бесконечное множество чисел. Положительные и отрицательные числа разделены между собой нулем. Отрицательные целые числа, например -1, читаются как «минус единица» или «отрицательная единица».

Положительные целые числа, например «+3» читается как положительная 3 или просто «три», то есть у положительных (натуральных) чисел знак «+» не пишется и слово «положительное» не произносится.

Примеры: отметь на числовой оси +5, +6, -7, -3, -1, 0 и т.д.

При движении вправо по числовой оси числа увеличиваются, а при движении влево - уменьшаются. Если мы хотим увеличить число на 2, мы движемся вправо по координатной оси на 2 единицы. Пример: 0+2=2; 2+2=4; 4+2=6 и т. д. И наоборот, если мы хотим уменьшить число на 3 мы будем двигаться влево на 3 единицы. Например: 6-3=3; 3-3=0; 0-3=-3; и т.д.

1. Попробуй увеличить число (-4) за 3 шага, увеличивая каждый раз на 2 единицы.

Двигаясь по числовой оси, как показано на рисунке, мы получим в результате 2.

2. Уменьши число 6 за шесть шагов, уменьшая его за каждый шаг на 2 единицы.

3. Увеличь число (-1) за три шага, увеличивая его на 4 единицы на каждом шаге.

С помощью координатной прямой легко сравнивать целые числа: из двух чисел больше то, которое на координатной прямой расположено правее, а меньше то, что стоит левее.

4. Сравни числа, поставив знак > или < , для удобства сравнения изобрази их на координатной прямой:

3 и 2; 0 и -5; -34 и -67; -72 и 0 и т.д.

5. Вспомни, как мы отмечали на координатном луче точки с натуральными координатами. Точки принято называть заглавными латинскими буквами. Нарисуй координатную прямую, и взяв удобный единичный отрезок, изобрази точки с координатами:

А) А(10),В(20),С(30),М(-10),N(-20)
Б) С(100),В(200),К(300),F(-100)
В) U(1000),Е(2000),R(-3000)

6. Запиши все целые числа, расположенные между -8 и 5, между -15 и -7, между -1 и 1.

Сравнивая числа, мы должны уметь ответить на сколько единиц одно число больше или меньше другого.

Нарисуем координатную прямую. Изобразим на ней точки с координатами от -5 до 5. Число 3 на две единицы меньше 5, на единицу меньше 4, на 3 единица больше нуля. Число -1 на единицу меньше нуля, на 2 единицы больше -3.

7. Ответь, на сколько единиц:

3 меньше 4; -2 меньше 3; -5 меньше -4; 2 больше -1; 0 больше -5; 4 больше -1

8. Нарисуй координатную прямую. Выпиши 7 чисел, каждое из которых на 2 единицы меньше предыдущего, начиная с 6. Какое у этого ряда последнее число? Сколько может быть всего таких чисел, если количество выписываемых чисел не ограничивать?

9. Выпиши 10 чисел, каждое из которых на 3 единицы больше предыдущего начиная с (-6). Сколько таких чисел может существовать, если ряд не ограничивать десятью?

Противоположные числа.

На числовой оси для каждого положительного числа (или натурального) существует отрицательное число, расположенное слева от нуля на таком же расстоянии. Например: 3 и -3; 7 и -7; 11 и -11.

Говорят, что число -3 является противоположным числу 3, и наоборот, -3 противоположно 3.

Определение: Два числа, которые отличаются друг от друга только знаком называются противоположными.

Мы знаем, что если умножить число на +1, то число не изменится. А если число умножить на (-1), что будет? У такого числа поменяется знак. Например, если 7 умножить на (-1) или отрицательную единицу, то результат будет (-7), число становится отрицательным. Если (-10) умножить на (-1), то получим (+10), т. е. получаем уже положительное число. Таким образом, мы видим, что противоположные числа получаются простым умножением исходного числа на (-1). Мы видим на числовой оси, что у каждого числа существует только одно противоположное число. Например, у (4) противоположное будет (-4), у числа (-10) – противоположное будет (+10). Попробуем найти противоположное число у нуля. Его нет. Т.е. 0 – противоположен самому себе.

А теперь посмотрим на числовой оси, что получится, если сложить 2 противоположных числа. Мы получаем, что сумма противоположных чисел равна 0.

1. Игра: пусть игровое поле разделено пополам на два поля: левое и правое. Между ними проходит разделительная черта. На поле находятся числа. Переход через черту означает умножение на (-1), иначе при переходе через разделительную черту число становится противоположным.

Пусть в левом поле находится число (5). В какое число превратится (5), если пятерка перейдет разделительную полосу 1 раз? 2 раза? 3 раза?

2. Заполни следующую таблицу:

3. Из множества пар выбери пары противоположных. Сколько таких пар ты получил?

9 ; -100; 1009; -63; -7; -9; 3; -33; 25; -1009; -2; 1; 0; 100; 27; 345; -56; -345; 33; 7.

Сложение и вычитание целых чисел.

Сложение (или знак «+») означает движение вправо на числовой оси.

  1. 1+3 = 4
  1. -1 + 4 = 3
  2. -3 + 2 = -1

Вычитание(или знак»-«) означает движение влево на числовой оси

  1. 3 – 2 = 1
  2. 2 – 4 = -2
  3. 3 – 6 = -3
  4. -3 + 5 = 2
  5. -2 – 5 = -7
  6. -1 + 6 = 5
  7. 1 – 4 = -3

Реши следующие примеры с помощью числовой оси:

  1. -3+1=
  2. 2)-4-1=
  3. -5-1=
  4. -2-7=
  5. -1+3=
  6. -1-4=
  7. -6+7=

В Древнем Китае при составлении уравнений коэффициенты уменьшаемых и вычитаемых записывались цифрами разного цвета. Прибыль –обозначали красной краской, а убытки – синей. Пример, продали 3 быка и купили 2 лошади. Рассмотрим другой пример: хозяйка принесла на рынок картошку и продала ее за 300 рублей, эти деньги мы прибавим к имуществу хозяйки и напишем их как +300(красное), а затем она потратила 100 рублей (эти деньги мы запишем как(-100)(синие). Таким образом, получилось, что хозяйка вернулась с рынка с прибылью в 200рублей(или +200). Иначе, числа, записанные красной краской всегда складывали, а записанные синей краской вычитали. По аналогии, будем синей краской обозначать отрицательные числа.

Таким образом, мы можем все положительные числа считать выигрышем, а отрицательные проигрышем или долгом или потерей.

Пример: -4 + 9 = +5 результат (+5) можно рассматривать как выигрыш в какой-либо игре; после того, как сначала было проиграно 4 очка, а затем выиграно 9 очков, то в результате останется выигрыш в 5 очков. Реши следующие задачи:

11. В игре в лото Петя сначала выиграл 6 очков, затем проиграл 3 очка, затем опять выиграл 2 очка, затем проиграл 5 очков. Каков результат игры у Пети?

12 (*). Мама пожила конфеты в вазочку. Маша съела 4 конфеты, Миша съел 5 конфет, Оля съела 3 конфеты. Мама положила еще в вазочку 10 конфет, и в вазочке стало 12конфет. Сколько конфет было сначала в вазочке?

13. В доме одна лестница ведет из подвала на второй этаж. Лестница состоит из двух пролетов по 15 ступенек каждый (один из подвала на первый этаж, а второй с первого этажа на второй). Петя был на первом этаже. Сначала он поднялся по лестнице на 7ступенек вверх, а затем спустился на 13 ступенек вниз. Где оказался Петя?

14. Кузнечик прыгает вдоль числовой оси. Один прыжок кузнечика составляет 3 деления на оси. Кузнечик сначала делает 3 прыжка вправо, а затем 5 прыжков влево. Где окажется кузнечик после этих прыжков, если первоначально он находился в 1)«+1»;2) «-6»;3) «0»;4) «+5»;5) «-2»;6) «+3»;7) «-1».

До сих пор мы привыкли к тому, что рассматриваемые числа отвечали на вопрос «сколько». Но отрицательные числа не могут быть ответом на вопрос «сколько». В житейском смысле отрицательные числа связаны с долгом, проигрышем, с такими действиями, как недолил, недопрыгнул, недовесил и т.д. Во всех этих случаях мы просто вычитаем долг, проигрыш, недовес. Например,

  1. На вопрос « Сколько будет «тысяча без 100»?», мы из 1000 должны вычесть 100 и получим 900.
  2. Выражение «3 часа без четверти» – означает, что мы должны вычесть 15 мин из 3 часов. Получим, таким образом, 2часа 45 мин.

А теперь реши следующие задачи:

15. Саша покупал 200гр. масла, но недобросовестный продавец недовесил 5 гр. Какую массу масла купил Саша?

16.На беговой дистанции в 5 км. Володя сошел с дистанции, не добежав до финиша 200м. Какое расстояние Володя пробежал?

17. Заполняя трехлитровую банку соком мама не долила 100мл сока. Сколько сока получилось в банке?

18. Кино должно начаться без двадцати минут восемь. сколько минут Во сколько часов и во сколько минут должно начаться кино?

19.У Тани было 200руб. и она должна Пете 50 руб. После того, как она отдала долг, сколько денег осталось у Тани?

20. Петя с Ваней пошли в магазин. Петя захотел купить книгу за 5 рублей. Но у него оказалось только 3 рубля, и он занял у Вани 2 рубля и купил книгу. Сколько денег оказалось после покупки у Пети?

3 - 5= -2 (из того, что у него было до покупки вычтем стоимость покупки, получим -2 рубля, то есть два рубля долга).

21. Днем температура воздуха была 3°тепла или +3°, а ночью 4° мороза или -4°. На сколько градусов понизилась температура? И на сколько градусов ночная температура меньше, чем дневная?

22. Таня договорилась встретиться с Володей без четверти семь. Во сколько часов и во сколько минут они договорились встретиться?

23. Тима с приятелем пошел в магазин покупать книгу, которая стоила 97 рублей. Но когда они пришли в магазин, то выяснилось, что книга подорожала, и стала стоить 105 рублей. Тима занял приятеля недостающую сумму, и все-таки купил книгу. Сколько денег Тима стал должен приятелю?

Отрицательные числа — это числа со знаком минус (−), например −1, −2, −3. Читается как: минус один, минус два, минус три.

Примером применения отрицательных чисел является термометр, показывающий температуру тела, воздуха, почвы или воды. В зимнее время, когда на улице очень холодно, температура бывает отрицательной (или как говорят в народе «минусовой»).

Например, −10 градусов холода:

Обычные же числа, которые мы рассматривали ранее, такие как 1, 2, 3 называют положительными. Положительные числа — это числа со знаком плюс (+).

При записи положительных чисел знак + не записывают, поэтому мы и видим привычные для нас числа 1, 2, 3. Но следует иметь ввиду, что эти положительные числа выглядят так: +1, +2, +3.

Содержание урока

Это прямая линия, на которой располагаются все числа: и отрицательные и положительные. Выглядит следующим образом:

Здесь показаны числа от −5 до 5. На самом деле координатная прямая бесконечна. На рисунке представлен лишь её небольшой фрагмент.

Числа на координатной прямой отмечают в виде точек. На рисунке жирная чёрная точка является началом отсчёта. Начало отсчёта начинается с нуля. Слева от начала отсчёта отмечают отрицательные числа, а справа — положительные.

Координатная прямая продолжается бесконечно по обе стороны. Бесконечность в математике обозначается символом ∞. Отрицательное направление будет обозначаться символом −∞, а положительное символом +∞. Тогда можно сказать, что на координатной прямой располагаются все числа от минус бесконечности до плюс бесконечности:

Каждая точка на координатной прямой имеет своё имя и координату. Имя — это любая латинская буква. Координата — это число, которое показывает положение точки на этой прямой. Проще говоря, координата это то самое число, которое мы хотим отметить на координатной прямой.

Например, точка А(2) читается как «точка А с координатой 2» и будет обозначаться на координатной прямой следующим образом:

Здесь A — это имя точки, 2 — координата точки A.

Пример 2. Точка B(4) читается как «точка B с координатой 4»

Здесь B — это имя точки, 4 — координата точки B.

Пример 3. Точка M(−3) читается как «точка M с координатой минус три» и будет обозначаться на координатной прямой так:

Здесь M — это имя точки, −3 — координата точки M.

Точки можно обозначать любыми буквами. Но общепринято обозначать их большими латинскими буквами. Более того, начало отчёта, которое по другому называют началом координат принято обозначать большой латинской буквой O

Легко заметить, что отрицательные числа лежат левее относительно начала отсчёта, а положительные числа правее.

Существуют такие словосочетания, как «чем левее, тем меньше» и «чем правее, тем больше» . Наверное, вы уже догадались о чём идёт речь. При каждом шаге влево, число будет уменьшаться в меньшую сторону. И при каждом шаге вправо число будет увеличиваться. Стрелка, направленная вправо, указывает на положительное направление отсчёта.

Сравнение отрицательных и положительных чисел

Правило 1. Любое отрицательное число меньше любого положительного числа.

Например, сравним два числа: −5 и 3. Минус пять меньше , чем три, несмотря на то, что пятёрка бросается в глаза в первую очередь, как цифра большая, чем три.

Связано это с тем, что −5 является отрицательным числом, а 3 — положительным. На координатной прямой можно увидеть, где располагаются числа −5 и 3

Видно, что −5 лежит левее, а 3 правее. А мы говорили, что «чем левее, тем меньше» . И правило говорит, что любое отрицательное число меньше любого положительного числа. Отсюда следует, что

−5 < 3

«Минус пять меньше, чем три»

Правило 2. Из двух отрицательных чисел меньше то, которое располагается левее на координатной прямой.

Например, сравним числа −4 и −1. Минус четыре меньше , чем минус единица.

Связано это опять же с тем, что на координатной прямой −4 располагается левее, чем −1

Видно, что −4 лежит левее, а −1 правее. А мы говорили, что «чем левее, тем меньше» . И правило говорит, что из двух отрицательных чисел меньше то, которое располагается левее на координатной прямой. Отсюда следует, что

Минус четыре меньше, чем минус единица

Правило 3. Ноль больше любого отрицательного числа.

Например, сравним 0 и −3. Ноль больше , чем минус три. Связано это с тем, что на координатной прямой 0 располагается правее, чем −3

Видно, что 0 лежит правее, а −3 левее. А мы говорили, что «чем правее, тем больше» . И правило говорит, что ноль больше любого отрицательного числа. Отсюда следует, что

Ноль больше, чем минус три

Правило 4. Ноль меньше любого положительного числа.

Например, сравним 0 и 4. Ноль меньше , чем 4. Это в принципе ясно и так. Но мы попробуем увидеть это воочию, опять же на координатной прямой:

Видно, что на координатной прямой 0 располагается левее, а 4 правее. А мы говорили, что «чем левее, тем меньше» . И правило говорит, что ноль меньше любого положительного числа. Отсюда следует, что

Ноль меньше, чем четыре

Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

История отрицательных чисел

Известно, что натуральные числа возникли при счете предметов. Потребность человека измерять величины и то обстоятельство, что результат измерения не всегда выражается целым числом, привели к расширению множества натуральных чисел. Были введены нуль и дробные числа.

Процесс исторического развития понятия числа на этом не закончился. Однако не всегда первым толчком к расширению понятия числа были исключительно практические потребности людей. Было и так, что задачи самой математики требовали расширения понятия числа. Именно так обстояло дело с возникновением отрицательных чисел. Решение многих задач, особенно решаемых с помощью уравнений, приводило к вычитанию из меньшего числа большего. Это потребовало введения новых чисел.

Впервые отрицательные числа появились в Древнем Китае уже примерно 2100 лет тому назад. Там умели также складывать и вычитать положительные и отрицательные числа, правила умножения и деления не применялись.

Во II в. до н. э. китайский ученый Чжан Цань написал книгу «Арифметика в девяти главах». Из содержания книги видно, что это не вполне самостоятельный труд, а переработка других книг, написанных задолго до Чжан Цаня. В этой книге впервые в науке встречаются отрицательные количества. Они понимаются им не так, как понимаем и применяем их мы. Полного и ясного понимания природы отрицательных величин и правил действия с ними у него нет. Каждое отрицательное число он понимал как долг, а положительное – как имущество. Действия с отрицательными числами он производил не так, как мы, а используя рассуждения о долге. Например, если к одному долгу прибавить другой долг, то в результате получиться долг, а не имущество (т, е. по нашему (- х) + (- х) = - 2х. Знака минус тогда не знали, поэтому, чтобы отличить числа, выражавшие долг, Чжань Цань писал их другими чернилами, чем числа, выражавшие имущество (положительные).

Положительные количества в китайской математике называли «чен» и изображали красным цветом, а отрицательные – «фу» и изображали черным. Такой способ изображения использовался в Китае до середины XII столетия, пока Ли Е не предложил более удобное обозначение отрицательных чисел – цифры, которые изображали отрицательные числа, перечеркивали черточкой наискось справа налево. Хотя китайские ученые и объяснили отрицательные количества как долг, а положительные - как имущество, всё же они избегали широкого употребления их, так как числа эти казались непонятными, действия с ними были неясны. Если же задача приводила к отрицательному решению, то старались заменить условие (как греки), чтобы в итоге получалось решение положительное.

В V-VI столетиях отрицательные числа появляются и очень широко распространяются в индийской математике. Для вычислений математики того времени пользовались счетной доской, на которой числа изображались с помощью счетных палочек. Так как знаков + и – в то время еще не было, палочками красного цвета изображали положительные числа, отрицательные же - палочками черного цвета и называли «долг» и «недостача». Положительные числа толковались как «имущество». В отличие от Китая в Индии были уже известны и правила умножения, деления. В Индии отрицательные числа систематически использовали в основном так, как это мы делаем сейчас. Уже в произведении выдающегося индийского математика и астронома Брахмагупты (598 – около 660 гг.) мы читаем: «имущество и имущество есть имущество, сумма двух долгов есть долг; сумма имущества и нуля есть имущество; сумма двух нулей есть нуль… Долг, который отнимают от нуля, становится имуществом, а имущество – долгом. Если нужно отнять имущество от долга, а долг от имущества, то берут их сумму».

Отрицательными числами индийские математики пользовались при решении уравнений, причем вычитание заменяли добавлением с равнопротивоположным числом.

Вместе с отрицательными числами индийские математики ввели понятие ноль, что позволило им создать десятеричную систему исчисления. Но долгое время ноль не признавали числом, «nullus» по - латыни – никакой, отсутствие числа. И лишь через X веков, в XVII-ом столетии с введением системы координат ноль становится числом.

Греки тоже поначалу знаков не использовали. Древнегреческий ученый Диофант вообще не признавал отрицательные числа, и если при решении уравнения получался отрицательные корень, то он отбрасывал его как “недоступный”. И Диофант старался так сформулировать задачи и составлять уравнения, чтобы избежать отрицательных корней, но вскоре Диофант Александрийский стал обозначать вычитание знаком .

Несмотря на то, что отрицательные числа использовались давно, относились к ним с некоторым недоверием, считая их не совсем реальными, истолкование их как имущество-долг вызывало недоумение: как можно «складывать» и «вычитать» имущество и долги?

В Европе признание наступило на тысячу лет позже. К идее отрицательного количества достаточно близко подошел в начале XIII столетия Леонардо Пизанский (Фибоначчи), который тоже ввёл его для решения финансовых задач с долгами и пришел к мысли, что отрицательные количества надо принимать в смысле, противоположном положительным. В те годы были развиты так называемые математические поединки. На состязании в решении задач с придворными математиками Фридриха II Леонардо Пизанскому (Фибоначчи) было предложено решить задачу: требовалось найти капитал нескольких лиц. Фибоначчи получил отрицательное значение. «Этот случай, - сказал Фибоначчи, - невозможен, разве только принять, что один имел не капитал, а долг».

В 1202 году он впервые использовал отрицательные числа для подсчёта своих убытков. Однако, в явном виде отрицательные числа применил впервые в конце XV столетия французский математик Шюке.

Тем не менее до XVII века отрицательные числа были “в загоне” и долгое время их называли «ложными», «мнимыми» или «абсурдными ». И даже в XVII веке знаменитый математик Блез Паскаль утверждал, что 0-4=0 ибо нет такого числа, которое может быть меньше ничего, а вплоть до XIX века математики часто отбрасывали в своих вычислениях отрицательные числа, считая их бессмысленными…

Бомбелли и Жирар, напротив, считали отрицательные числа вполне допустимыми и полезными, в частности, для обозначения недостачи чего-либо. Отголоском тех времён является то обстоятельство, что в современной арифметике операция вычитания и знак отрицательных чисел обозначаются одним и тем же символом (минус), хотя алгебраически это совершенно разные понятия.

В Италии ростовщики, давая деньги в долг, ставили перед именем должника сумму долга и черточку, вроде нашего минуса, а когда должник возвращал деньги, зачеркивали ее, получалось что-то вроде нашего плюса. Можно же плюс считать зачеркнутым минусом!

Современное обозначение положительных и отрицательных чисел со знаками

« + » и « - » применил немецкий математик Видман.

Немецкий математик Михаил Штифель в книге «Полная арифметика» (1544) впервые вводит понятие об отрицательных числах как о числах, меньших нуля (меньших, чем ничто). Это был очень большой шаг вперёд в деле обоснования отрицательных чисел. Он дал возможность рассматривать отрицательные числа не как долг, а совсем по-иному, по-новому. Но Штифель называл отрицательные числа абсурдными; действия с ними, по его словам, «тоже идут абсурдно , навыворот».

После Штифеля ученые стали более уверенно производить действия с отрицательными числами.

Все чаще сохранялись и истолковывались отрицательные решения в задачах.

В XVII в. великий французский математик Рене Декарт предложил откладывать отрицательные числа на числовой оси влево от нуля. Нам сейчас кажется это все таким простым и понятным, но, чтобы дойти до этой мысли, потребовалось восемнадцать веков работы ученой мысли от китайского ученого Чжан Цаня до Декарта.

В трудах Декарта отрицательные числа получили, как говорят, реальное истолкование. Декарт и его последователи признавали их наравне с положительными. Но в действиях над отрицательными числами не все было ясно (например, умножение на них), поэтому многие ученые не желали признавать отрицательные числа за числа действительные. Среди ученых разгорелся большой и долгий спор о сущности отрицательных чисел о том признать отрицательные числа числами действительными или нет. Спор этот после Декарта продолжался около 200 лет. За этот период математика как наука получила очень большое развитие, и на каждом шагу в ней встречались отрицательные числа. Математика стала немыслимой, невозможной без отрицательных чисел. Все большему числу ученых становилось ясно, что отрицательные числа – это числа действительные, такие же реальные, на самом деле существующие числа, как числа положительные.

С трудом завоевали себе место в математике отрицательные числа. Как ни старались ученые избегать их. Все же удавалось это им не всегда. Жизнь ставила перед наукой новые и новые задачи, и все чаще и чаще задачи эти приводили к отрицательным решениям и в Китае, и в Индии, и в Европе. Только в начале XIX в. теория отрицательных чисел закончила свое развитие, и «абсурдные числа» получили всеобщее признание.

Всякий физик постоянно имеет дело с числами: он всегда что-то измеряет, вычисляет, рассчитывает. Везде в его бумагах – числа, числа и числа. Если приглядеться к записям физика, то обнаружится, что при записи чисел он часто использует знаки «+» и «-».

Как же возникают положительные, а тем более отрицательные числа в физике?

Физик имеет дело с различными физическими величинами, описывающими разнообразные свойства окружающих нас предметов и явлений. Высота здания, расстояние от школы до дома, масса и температура человеческого тела, скорость автомобиля, объем банки, сила электрического тока, показатель преломления воды, мощность ядерного взрыва, напряжение между электродами, продолжительность урока или перемены, электрический заряд металлического шарика – все это примеры физических величин. Физическую величину можно измерить.

Не следует думать, что любая характеристика предмета или явление природы может быть измерена и, следовательно, является физической величиной. Это совсем не так. Например, мы говорим: «Какие красивые горы вокруг! И какое красивое озеро там, в низу! А какая красивая ель вон на той скале! Но мы не можем измерить красоту гор, озера, или этой одинокой ели!» Значит такая характеристика, как красота, не является физической величиной.

Измерения физических величин проводятся при помощи измерительных приборов, таких как линейка, часы, весы и т. д.

Итак, числа в физике возникают в результате измерения физических величин, а численное значение физической величины, получаемое в результате измерения, зависит: от того, как определена эта физическая величина; от используемых единиц измерения .

Посмотрим на шкалу обычного уличного термометра.

Она имеет вид, изображенный на шкале 1. На ней нанесены только положительные числа, и поэтому при указании численного значения температуры приходится дополнительно пояснять 20 градусов тепла (выше нуля). Это для физиков неудобно – ведь слова в формулу не подставишь! Поэтому в физике применяется шкала с отрицательными числами.

Посмотрим на физическую карту мира. Участки суши на ней раскрашены различными оттенками зеленого и коричневого цветов, а моря и океаны раскрашены голубым и синим. Каждому цвету соответствует своя высота (для суши) или глубина (для морей и океанов). На карте нарисована шкала глубин и высот, которая показывает, какую высоту (глубину) означает тот или иной цвет,

Используя такую шкалу, достаточно указать число без всяких дополнительных слов: положительные числа отвечают различным местам на суше, находящимся над поверхностью моря; отрицательные числа соответствуют точкам, находящимся под поверхностью моря.

В рассмотренной нами шкале высот за нулевую принимается высота поверхности воды в Мировом океане. Эта шкала используется в геодезии и картографии.

В отличие от этого, в быту мы обычно за нулевую высоту принимаем высоту поверхности земли (в том месте, в котором мы находимся).

3.1 Как в древности считали года?

В разных странах по-разному. Например, в Древнем Египте каждый раз, когда начинал править новый царь, счёт лет начинался заново. Первый год правления царя считался первым годом, второй – вторым и так далее. Когда этот царь умирал и к власти приходил новый, вновь наступал первый год, затем второй, третий. Иным был счет лет, применявшийся жителями одного из древнейших городов мира-Рима. Год основания своего города римляне считали первым, следующий - вторым и так далее.

Счет лет, которым мы пользуемся, возник давно и связан с почитанием Иисуса Христа – основателя христианской религии. Счёт лет от рождения Иисуса Христа постепенно был принят в разных странах. В нашей стране он введён царём Петром Первым триста лет назад. Время, исчисляемое от Рождества Христова, мы называем НАША ЭРА (а пишем сокращённо Н. Э.). Продолжается наша эра две тысячи лет.

Заключение

Большинство людей знают отрицательные числа, но есть и такие у которых представление отрицательных чисел неверное.

Отрицательные числа больше всего встречаются в точных науках, в математике и физике.

В физике отрицательные числа возникают в результате измерений, вычислений физических величин. Отрицательное число – показывает величину электрического заряда. В других науках, как географии и истории, отрицательное число можно заменить словами, например, ниже уровня моря, а в истории – 157 лет до н. э.

Литература

1. Большая научная энциклопедия, 2005.

2. Вигасин А. А,., «История древнего мира» учебник 5 класса , 2001г.

3.Выговская В. В. « Поурочные разработки по Математике:6 класс » - М.:ВАКО, 2008 г

4. «Положительные и отрицательные числа», учебное пособие по математике для 6-го класса, 2001.

5. Детская энциклопедия «Я познаю мир», Москва, «Просвещение», 1995г.

6.. «Изучаем математику», учебное издание, 1994 г.

7. « Элементы историзма в преподавании математики в средней школе », Москва, «Просвещение», 1982г

8. Нурк Э. Р., Тельгмаа А. Э. «Математика 6 класс», Москва, «Просвещение»,1989г

9. «История математики в школе», Москва, «Просвещение», 1981 г.

Похожие статьи

  • Золотые кони хана батыя - легендарные сокровища, точное местонахождение

    из Энциклопедии чудес, загадок и тайн ЗОЛОТЫЕ КОНИ ХАНА БАТЫЯ - легендарные сокровища, точное местонахождение которых до сих пор неизвестно. История коней примерно такова: После того, как хан Батый разорил Рязань и Киев, он...

  • Какую говядину лучше варить

    Покупка мяса - это самая существенная часть продовольственного бюджета любой семьи (за исключением вегетарианской). Кто-то предпочитает свинину, кто-то птицу, однако наиболее полезной и питательной считается говядина. Это мясо не самое...

  • Какие социальные сети существуют для общения с друзьями и родственниками

    Сегодня соцсети настолько прочно укоренились в нашей жизни, что состав пятерки самых популярных социальных площадок практически не меняется из года в год. Тем не менее, масштабы проникновения и использования этих соцсетей отличаются в...

  • Обзор самых новых лекарств от рака

    Предлагаю вашему вниманию простые, проверенные временем, средства народной медицины, которые помогут при онкологических заболеваниях .Звездчатка (мокрица). Сок растения, крепкий настой и отвар применяется для местных ванн и примочек при...

  • Самые действенные способы защиты от сглаза, порчи, колдовства, зависти

    Признаками магического нападения могут являться: любые физические, психоэмоциональные отклонения без особой на-то причины. С целью защиты в отражения удара в той же самой магии выработаны довольно мощные приемы, которые отрабатывались не...

  • Что значит "поставить крест"

    О каком кресте говорил Иисус своим ученикам? Куда они должны были следовать со своим крестом? Что такое крестный ход? Что означают выражения: «Креста на тебе нет!» или «Поставить на нем крест!» ВСЕСЛАВЪ (ГЛОБА Игорь Александрович),...