Коррозионные повреждения экранных труб газомазутных котлов. Аварии паровых котлов, связанные с нарушением водного режима, коррозией и эрозией металла Признаки коррозионной агрессивности воды в котельных установках

Аварии паровых котлов, связанные с нарушением водного режима, коррозией и эрозией металла

Нормальный водный режим - одно из важнейших условий надежности и экономичности эксплуатации котельной установки. Применение воды с повышенной жесткостью для питания котлов влечет за собой образование накипи, перерасход топлива и увеличение расходов на ремонт и чистку котлов. Известно, что накипеобразование может привести к аварии парового котла вследствие пережога поверхностей нагрева. Поэтому правильный водный режим в котельной следует рассматривать не только с точки зрения повышения экономичности котельной установки, но и как важнейшее профилактическое мероприятие по борьбе с аварийностью.

В настоящее время котельные установки промышленных предприятий оснащены водоподготовительными устройствами, поэтому улучшились условия их эксплуатации и значительно снизилось число аварий, вызванных накипеобразованием и коррозией.

Однако на некоторых предприятиях администрация формально выполнив требование Правил котлонадзора об оснащении котлов водоподготовительными установками, не обеспечивает нормальных условий эксплуатации этих установок, не контролирует качество питательной воды и состояние поверхностей нагрева котлов, допуская загрязнения котлов накипью и шламом. Приведем несколько примеров аварий котлов по этим причинам.

1. В котельной завода сборных железобетонных конструкций из-за нарушений водного режима в котле ДКВР-6, 5-13 произошел разрыв трех экранных труб, часть экранных труб деформирована, на многих трубах образовались отдулины.

В котельной имеется двухступенчатая натрий-катионитовая водоочистка и деаэратор, но нормальной работе водоподготовительного оборудования не уделяли должного внимания. Регенерацию ка-тионитовых фильтров не проводили в установленные инструкцией сроки, качество питательной и котловой воды проверяли редко, сроки периодической продувки котла не соблюдали. Воду в деаэраторе не подогревали до требумой температуры и поэтому обескислороживания воды фактически не происходило.

Установлено также, что в котел часто подавали сырую воду, при этом не соблюдали требования «Правил устройства и безопасной эксплуатации паровых и водогрейных котлов», согласно которым запорные органы на линии сырой воды должны быть опломбированы в закрытом положении, а каждый случай питания сырой водой должен быть записан в журнал водоподготовки. Из отдельных записей в журнале водоподготовки видно, что жесткость питательной воды достигала 2 мг-экв/кг и более, при допустимой по нормам котлонадзора 0,02 мг-экв/кг. Чаще всего в журнал вносили такие записи: «вода грязная, жесткая», без указания результатов химического анализа воды.

При осмотре котла после остановки на внутренних поверхностях экранных труб обнаружены отложения толщиной до 5 мм, отдельные трубы почти полностью забиты накипью и шламом. На внутренней поверхности барабана в нижней части толщина отложений достигла 3 мм, передняя часть барабана на одну треть по высоте завалена шламом.

За 11 мес. до этой аварии аналогичные повреждения («трещины, отдулины, деформация) были выявлены в 13-ти экранных трубах котла. Дефектные трубы были заменены, но администрация пред приятия в нарушение «Инструкции по расследованию аварий, но повлекших за собой несчастных случаев на подконтрольных Госгор технадзору СССР предприятиях и объектах» не провела расследование этого случая и не приняла мер по улучшению условий эксплуатации котлов.

2. На энергопоезде сырую воду для питания однообарабанного водотрубного экранированного парового котла производительностью 10 т/ч с рабочим давлением 41 кгс/см2 обрабатывали методом катионного обмена. Вследствие неудовлетворительной работы катион и тового фильтра остаточная жесткость умягченной воды доходила до

0,7 мг-экв/кг вместо предусмотренной проектом 0,01 мг-экв/кг. Про дувка котла производилась нерегулярно. При остановках на ремонт барабан котла и коллекторы экранов не вскрывали и не осматривали. Из-за отложений накипи произошел разрыв трубы, при этом паром и горящим топливом, выброшенным из топки, был обожжен кочегар.

Несчастного случая могло не быть, если бы топочная дверка котла была закрыта на щеколду, как этого требуют правила безо* пасной эксплуатации котлов.

3. На цементном заводе был введен в эксплуатацию вновь смонтированный одно барабанный водотрубный котел производительностью 35 т/ч с рабочим давлением 43 кгс/см2 без химводоочистки, монтаж которой к этому времени не был закончен. В течение месяца питание котла производилось неочищенной водой. Деаэрация воды более двух месяцев не производилась, так как к дэаэратору не был подключен паропровод.

Нарушения водного режима допускались и после того, как во. доподготовительное оборудование было включено в работу. Котел часто подпитывали сырой водой; режим продувок не соблюдали; химическая лаборатория не контролировала качество питательной воды, так как не была снабжена необходимыми реактивами.

Из-за неудовлетворительного водного режима отложения на внутренних поверхностях экранных труб достигали толщины 8 мм; в результате чего на 36 экранных трубах образовались отдулины» значительная часть труб была деформирована, стенки барабана с внутренней стороны подверглись коррозии.

4. На заводе железобетонных изделий питание котла системы Шухова-Берлина производилось водой, обработанной электромагнитным способом. Известно, что при этом способе обработки воды должно быть обеспечено своевременное эффектное удаление шлама из котла.

Однако при эксплуатации котла это условие не выполнялось. Продувка котла производилась нерегулярно, график остановки котла на промывку и чистку не соблюдался.

В резульате этого внутри котла скопилось большое количество шлама. Задняя часть труб была забита шламом на 70-80% сечения, грязевик - на 70% объема, толщина накипи на поверхностях нагрева достигла 4 мм. Это привело к перегреву и деформа-ции кипятильных труб, трубных рсшсчок и головок трубчатых секций.

При выборе электромагнитного способа обработки йоды в данном случае не учли качество питательной воды и конструктивные особенности котла, при этом не были приняты меры по организации нормального режима продувок, что привело к скоплению шлама и значительным отложениям накипи в котле.

5. Исключительное значение приобрели вопросы организации рационального водного режима для обеспечения надежной и экономичной эксплуатации котлов тепловых электростанций.

Образование отложений на поверхностях нагрева котельных агрегатов происходит в результате сложных физико-химических процессов, в которых участвуют не только накипеобразопатели, но и окислы металлов и легкорастворимые соединения. Диализ отложений показывает, что наряду с солями накипеобразователей в них содержится значительное количество окислов железа, являющихся продуктами коррозионных процессов.

За прошедшие годы в нашей стране достигнуты значительные успехи в организации рационального водного режима котлов тепловых электростанций и химического контроля за водой и паром, а также во внедрении коррозионностойких металлов и защитных покрытий.

Применение современных средств водоподготовки позволило резко повысить надежность и экономичность эксплуатации энергетического оборудования.

Однако на отдельных тепловых электростанциях все ещё допускаются нарушения водного режима.

В июне 1976 г. по этой причине на ТЭЦ целлюлозно-бумажного комбината произошла авария на паровом котле типа БКЗ-220-100 ф паропроизводительностью 220 т/ч с параметрами пара 100 кгс/см2 и 540° С, изготовленном на Барнаульском котлостроительном заводе в 1964 г. Котел однобарабанный с естественной циркуляцией, выполнен по П-образной схеме. Топочная камера призматическая полностью экранирована трубами с наружным диаметром 60 мм, шаг которых 64 мм. Нижняя часть экранной поверхности образует так называемую холодную воронку, по откосам которой частички шлака в твердом виде скатываются вниз, в шлаковый комод. Схема испарения двухступенчатая, промывкой пара питательной водой. Первая ступень испарения включена непосредственно в барабан котла, второй ступенью служат выносные паросепарационные циклоны, включенные в схему циркуляции средних боковых блоков экрана.

Питание котла осуществляется смесью химически очищенной воды (60%) и конденсата, поступающего из турбин и производственных цехов (40%). Вода для питания котла обрабатывается по схеме: известковые - коагуляция - магнезиальное обескремнивание в

Осветлителях - двухступенчатое катионирование.

Котел работает на угле Интинского месторождения с относительно низкой температурой плавления золы. В качестве растопочного топлива используется мазут. До аварии котел отработал 73 300 ч.

В день аварии котел был включен в 00 ч 45 мин и работал без отклонения от нормального режима до 14 ч. Давление в барабане за этот период работы поддерживалось в пределах 84-102 кгс/см2, расход пара составлял 145-180 т/ч, температура перегретого пара-520-535° С.

В 14 ч 10 мин произошел разрыв 11-ти труб фронтового экрана в зоне холодной воронки на отметке 3,7 м с частичным разрушением

обмуровки. Предполагается, что сначала произошел разрыв водной или двух труб, а затем последовал разрыв остальных труб. Уровень воды резко снизился, и котел был остановлен автоматикой защиты.

Осмотр показал, что разрушению подверглись наклонные участки труб холодной воронки вне гибов, при этом от первого фронтового нижнего коллектора оторваны две трубы, от второго-девять. Разрыв носит хрупкий характер, кромки в местах разрыва тупые и не имеют утонения. Длина разорвавшихся участков труб составляет от одного до трех метров. На внутренней поверхности поврежденных труб, а также образцов, вырезанных из неповрежденных труб, обнаружены рыхлые отложения толщиной до 2,5 мм, а также большое число язвин, глубиной до 2 мм, расположенных цепочкой шириной до 10 мм по двум образующим вдоль границы обогрева трубы. Именно в местах коррозионных повреждений произошло разрушение металла.

В ходе расследования аварии выяснилось, что ранее в процессе эксплуатации котла уже были разрывы экранных труб. Так, например, за два месяца до аварии произошел разрыв трубы фронтового экрана на отметке 6,0 м. Через 3 дня котел был вновь остановлен из-за разрыва двух труб фронтового экрана на отметке 7,0 м. И в этих случаях разрушение труб явилось результатом коррозионных повреждений металла.

В соответствии с утвержденным графиком котел должен был быть остановлен на капитальный ремонт в третьем квартале 1976 г. В период ремонта намечалось провести замену труб фронтового экрана в районе холодной воронки. Однако котел не остановили на ремонт, и трубы не были заменены.

Коррозионные повреждения металла явились следствием нарушений водного режима, допускавшихся в течение длительного времени при эксплуатации котлов ТЭЦ. Котлы питали водой с повышенным содержанием железа, меди и кислорода. Общее содержание солей в питательной воде значительно превышало допустимые нормы, в результате чего даже в контурах первой ступени испарения содержание солей доходило до 800 мг/кг. Используемые для питания котлов производственные конденсаты с содержанием железа 400- 600 мг/кг не очищали. По этой причине, а также из-за того, что не было достаточной противокоррозионной защиты водоподготовительного оборудования (защита осуществлена частично), на внутренних поверхностях труб были значительные отложения (до 1000 г/м2), в основном, состоящие из соединений железа. Аминирование и гидра-зинирование питательной воды было введено лишь незадолго до аварии. Предпусковые и эксплуатационные кислотные промывки котлов не производили.

Возникновению аварии способствовали и другие нарушения Правил технической эксплуатации котлов. На ТЭЦ весьма часто растапливают котлы, причем наибольшее число растопок приходилось на котел, с которым произошла авария. Котлы оснащены устройствами для Парового разогрева, однако при растопке их не использовали. При растопках не контролировали перемещения экранных коллекторов.

Для уточнения характера коррозионного процесса и выяснения причин образования язвин преимущественно в первых двух панелях фронтового экрана и расположения этих язвин в виде цепочек материалы расследования аварии были направлены в ЦКТИ. При рассмотрении этих материалов было обращено внимание на то, что

котлы работали с резко переменной нагрузкой, при этом допускалось значительное снижение паропроизводительности (до 90 т/ч), при котором возможно местное нарушение циркуляции. Котлы растапливали следующим способом: в начале растопки включали две форсунки, расположенные встречно (по диагонали). Такой способ приводил к замедлению процесса естественной циркуляции в панелях первого и второго фронтовых экранов. Именно в этих экранах и найден основной очаг язвенных повреждений. В питательной воде эпизодически появлялись нитриты, за концентрацией которых контроль не осуществлялся.

Анализ материалов аварии с учетом перечисленных недостатков дал основание считать, что образование цепочек язвин на боковых образующих внутренних поверхностей труб фронтового экрана на скате холодной воронки является результатом длительного процесса подшламовой электрохимической коррозии. Деполяризаторами этого процесса явились нитриты и растворенный в воде кислород.

Расположение язвин в виде цепочек является, по-видимому, результатом работы котла при растопках с неустановившимся процессом естественной циркуляции. В период начала циркуляции на верхней образующей наклонных труб холодной воронки периодически образуются поровые пузыри, вызывающие эффект местных термопульсаций в металле £ протеканием электрохимических процессов в рбласти временного раздела фаз. Именно эти места явились очагами образования цепочек язвин. Преимущественное образование язвин в первых двук панелях фронтового экрана явилось следствием неправильного режима растопки.

6. На ТЙЦ вб время работы котла ПК-ЮШ-2 паропроизводп-тельностью 230 т/ч с параметрами пара- 100 кгс/см2 и 540° С было замечено парение на отводе от сборного коллектора свежего пара к главному предохранительному клапану. Отвод соединен с помощью сварки с литым тройником, вваренным в сборный коллектор.

Котел был аварийно остановлен. При осмотре обнаружена кольцевая трещина в нижней части трубы (168X13 мм) горизонтального участка отвода в непосредственной близости от места присоединения отвода к литому тройнику. Длина трещины на наружной поверхности- 70 мм и на внутренней поверхности-110 мм. На внутренней поверхности трубы в месте ее повреждения выявлено большое число коррозионных язвин и отдельные трещины, расположенные параллельно основной.

Металлографическим анализом установлено, что трещины начинаются от язвин в обезуглероженном слое металла и далее развиваются транскристаллитно в направлении, перпендикулярном к поверхности трубы. Микроструктура металла трубы - ферритные зерна и тонкие перлитные цепочки по границам зерен. По шкале, приведенной в виде приложения к МРТУ 14-4-21-67, микроструктура может быть оценена баЛлом 8.

Химический состав металла поврежденной трубы соответствует стали 12Х1МФ. Механические свойства удовлетворяют требованиям технических условий поставки. Диаметр трубы на поврежденном участке не выходит за пределы плюсового допуска.

Горизонтальный отвод к предохранительному клапану при неотрегулированной системе крепления можно рассматривать как консольную балку, приваренную к жестко закрепленному в коллекторе тройнику, с максимальными изгибными напряжениями в месте заделки, т. е. в зоне, где труба подверглась повреждениям. При отсутствии

дренажа в отводе и наличии контр уклона, из-за упругого изгиба на участке от предохранительного клапана до сборного коллектора свежего пара, в нижней части трубы перед тройником возможно постоянное скопление небольшого количества конденсата, обогащавшегося во время остановов, консервации и пусков котла в работу, кислородом из воздуха. При этих условиях происходило коррозионное разъедание металла, а совместное воздействие на металл конденсата и растягивающих напряжений вызывало его коррозионное растрескивание. В процессе эксплуатации в местах коррозионных язвин и неглубоких трещин в результате агрессивного воздействия среды и переменных напряжений в металле могут развиваться усталостно-коррозионные трещины, что, по-видимому, и происходило в данном случае.

Для того чтобы конденсат не скапливался, в отводе была сделана обратная циркуляция пара. Для этого труба отвода непосредственно перед главным предохранительным клапаном была соединена линией обогрева (труб диаметром 10 мм) с промежуточной камерой пароперегревателя, по которой подается пар с температурой 430° С. При небольшом перепаде избыточного давления (до 4 кгс/см2) обеспечивается непрерывный расход пара и температура среды в отводе поддерживается не ниже 400° С. Реконструкция отвода осуществлена на всех котлах ПК-ЮШ-2 ТЭЦ.

Для того, чтобы предотвратить повреждения отводов к главным предохранительным клапанам на котлах ПК-ЮШ-2 и подобных им рекомендуется:

Проверить ультразвуком нижние полупериметры труб отводов в местах приварки к тройникам;

Проверить, соблюдены ли требуемые уклоны и при необходимости отрегулировать системы крепления паропроводов к главным предохранительным клапанам с учетом фактического состояния паропроводов (веса изоляции, фактического веса труб, ранее проведенных реконструкций);

Сделать в отводах к главным предохранительным клапанам обратную циркуляцию пара; конструкцию и внутренний диаметр паропровода обогрева в каждом отдельном случае необходимо согласовать с изготовителем оборудования;

Все тупиковые отводы на предохранительные клапаны тщательно заизолировать.

(Из экспресс - информации СЦНТИ ОРГРЭС- 1975 г.)

Наиболее активно коррозия экранных труб проявляется в местах концентрирования примесей теплоносителя. Сюда относятся участки экранных труб с высокими тепловыми нагрузками, где происходит глубокое упаривание котловой воды (особенно при наличии на испарительной поверхности пористых малотеплопроводных отложений). Поэтому в отношении предупреждения повреждений экранных труб, связанных с внутренней коррозией металла, нужно учитывать необходимость комплексного подхода, т.е. воздействия как на водно-химический, так и топочный режим.

Повреждения экранных труб в основном носят смешанный характер, их условно можно разделить на две группы:

1) Повреждения с признаками перегрева стали (деформация и утонение стенок труб в месте разрушения; наличие графитных зерен и т.д.).

2) Хрупкие разрушения без характерных признаков перегрева металла.

На внутренней поверхности многих труб отмечены значительные отложения двухслойного характера: верхний - слабосцепленный, нижний - окалинообразный, плотно сцепленный с металлом. Толщина нижнего слоя окалины составляет 0.4-0.75 мм. В зоне повреждения окалина на внутренней поверхности подвергается разрушению. Вблизи мест разрушений и на некотором удалении от них внутренняя поверхность труб поражена коррозионными язвинами и хрупкими микроповреждениями.

Общий вид повреждений свидетельствует о тепловом характере разрушения. Структурные изменения на лобовой стороне труб - глубокая сферидизация и распад перлита, образование графита (переход углерода в графит 45-85%) - свидетельствует о превышении не только рабочей температуры экранов, но и допустимой для стали 20 500 оС. Наличие FeO также подтверждает высокий уровень температур металла в процессе эксплуатации (выше 845 оК - т.е. 572 оС).

Хрупкие повреждения, вызванные водородом, обычно происходят в зонах с мощными тепловыми потоками, под толстыми слоями отложений, и на-клонных или горизонтальных трубах, а также на участках теплопередачи рядом с подкладными кольцами сварных швов либо другпмии устройства-ми, препятствующими свободному движению потоков..Опыт показал, что повреждения, вызванные водородом, происходят в котлах, работающих под давлением ниже 1000 фунт/кв. дюйм (6.9 МПа).

Повреждення под действием водорода обычно приводят к разрывам с тол-стыми краями. Другие механизмы, способствующие образованию разры-вов с толстыми краями, это коррозионное растрескивание под напряжени-ем, коррозионная усталость, разрывы под действием напряжений, а также (в некоторых редких случаях) сильнейший перегрев. Может оказаться за-труднительным визуально отличить разрушения, вызванные водородным повреждением, от других видов разрушений, однако здесь могут помочь не-которые их особенности.

Например, водородное повреждение почти всегда связано с образова-нием раковин в металле (см. меры предосторожности, приведенные в Гла-вах 4 и 6). Другие виды разрушений (за исключением, возможно, коррози-онной усталости, которая часто начинается в отдельных раковинах) обыч-но не связаны с сильной коррозией.

Аварии труб в результате водородного повреждения металла часто про-являются в виде образования в стенке трубы прямоугольного «окна», что не характерно для других видов разрушений.

Для оценки повреждаемости экранных труб следует учитывать, что металлургическое (исходное) содержание газообразного водорода в стали перлитного класса (в т.ч. ст.20) не превышает 0.5--1 см3/100г. При содержании водорода выше 4--5 см3/100г механические свойства стали существенно ухудшаются. При этом ориентироваться надо преимущественно на локальное содержание остаточного водорода, поскольку при хрупких разрушениях экранных труб резкое ухудшение свойств металла отмечается только в узкой зоне по сечению трубы при неизменно удовлетворительных структуре и механических свойствах прилегаемого металла на удалении всего 0.2-2мм.

Полученные значения средних концентраций водорода у кромки разрушения в 5-10 раз превышают его исходное содержание для ст.20, что не могло не оказать существенного влияния на повреждаемость труб.

Приведенные результаты свидетельствуют, что водородное охрупчивание оказалось решающим фактором повреждаемости экранных труб котлов КрТЭЦ.

Потребовалось дополнительное изучение, какой из факторов оказывает на этот процесс определяющее влияние: а) термоциклирование из-за дестабилизации нормального режима кипения в зонах повышенных тепловых потоков при наличии отложений на испарительной поверхности, а, как результат, - повреждение покрывающих ее защитных оксидных пленок; б) наличие в рабочей среде коррозионно активных примесей, концентрирующихся в отложениях у испарительной поверхности; в) совместное действие факторов "а" и "б".

Особо стоит вопрос о роли топочного режима. Характер кривых свидетельствует о скоплении водорода в ряде случаев вблизи наружной поверхности экранных труб. Это возможно прежде всего при наличии на указанной поверхности плотного слоя сульфидов, в значительной мере не проницаемых для водорода, диффундирующего от внутренней поверхности к наружной. Образование сульфидов обусловлено: высокой сернистостью сжигаемого топлива; набросом факела на экранные панели. Другой причиной наводораживания металла у наружной поверхности является протекание коррозионных процессов при контакте металла с дымовыми газами. Как показал анализ наружных отложений труб котлов, обычно имело место действие обеих приведенных причин.

Роль топочного режима проявляется также в коррозии экранных труб под действием чистой воды, которая чаще всего наблюдается на парогенераторах высокого давления. Очаги коррозии расположены обычно в зоне максимальных местных тепловых нагрузок и только на обогреваемой поверхности трубы. Это явление ведет к образованию круглых или эллиптических углублений диаметром больше 1 см.

Перегрев металла возникает наиболее часто при наличии отложений в связи с тем, что количество воспринятого тепла будет практически одинаковым как для чистой трубы, так и для трубы, содержащей накипь температура трубы будет разной.

МИНИСТЕРСТВО ЭНЕРГЕТИКИ И ЭЛЕКТРИФИКАЦИИ СССР

ГЛАВНОЕ НАУЧНО-ТЕХНИЧЕСКОЕ УПРАВЛЕНИЕ ЭНЕРГЕТИКИ И ЭЛЕКТРИФИКАЦИИ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ
ПО ПРЕДУПРЕЖДЕНИЮ
НИЗКОТЕМПЕРАТУРНОЙ
КОРРОЗИИ ПОВЕРХНОСТЕЙ
НАГРЕВА И ГАЗОХОДОВ КОТЛОВ

РД 34.26.105-84

СОЮЗТЕХЭНЕРГО

Москва 1986

РАЗРАБОТАНО Всесоюзным дважды ордена Трудового Красного Знамени теплотехническим научно-исследовательским институтом имени Ф.Э. Дзержинского

ИСПОЛНИТЕЛИ Р.А. ПЕТРОСЯН, И.И. НАДЫРОВ

УТВЕРЖДЕНО Главным техническим управлением по эксплуатации энергосистем 22.04.84 г.

Заместитель начальника Д.Я. ШАМАРАКОВ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ПРЕДУПРЕЖДЕНИЮ НИЗКОТЕМПЕРАТУРНОЙ КОРРОЗИИ ПОВЕРХНОСТЕЙ НАГРЕВА И ГАЗОХОДОВ КОТЛОВ

РД 34.26.105-84

Срок действия установлен
с 01.07.85 г.
до 01.07.2005 г.

Настоящие Методические указания распространяются на низкотемпературные поверхности нагрева паровых и водогрейных котлов (экономайзеры, газовые испарители, воздухоподогреватели различных типов и т.п.), а также на газовый тракт за воздухоподогревателями (газоходы, золоуловители, дымососы, дымовые трубы) и устанавливают методы защиты поверхностей нагрева от низкотемпературной коррозии.

Методические указания предназначены для тепловых электростанций, работающих на сернистых топливах, и организаций, проектирующих котельное оборудование.

1. Низкотемпературной коррозией называется коррозия хвостовых поверхностей нагрева, газоходов и дымовых труб котлов под действием конденсирующихся на них из дымовых газов паров серной кислоты.

2. Конденсация паров серной кислоты, объемное содержание которых в дымовых газах при сжигании сернистых топлив составляет лишь несколько тысячных долей процента, происходит при температурах, значительно (на 50 - 100 °С) превышающих температуру конденсации водяных паров.

4. Для предупреждения коррозии поверхностей нагрева в процессе эксплуатации температура их стенок должна превышать температуру точки росы дымовых газов при всех нагрузках котла.

Для поверхностей нагрева, охлаждаемых средой с высоким коэффициентом теплоотдачи (экономайзеры, газовые испарители и т.п.), температуры среды на входе в них должны превышать температуру точки росы примерно на 10 °С.

5. Для поверхностей нагрева водогрейных котлов при работе их на сернистом мазуте условия полного исключения низкотемпературной коррозии не могут быть реализованы. Для ее уменьшения необходимо обеспечить температуру воды на входе в котел, равную 105 - 110 °С. При использовании водогрейных котлов в качестве пиковых такой режим может быть обеспечен при полном использовании подогревателей сетевой воды. При использовании водогрейных котлов в основном режиме повышение температуры воды на входе в котел может быть достигнуто с помощью рециркуляции горячей воды.

В установках с применением схемы включения водогрейных котлов в теплосеть через водяные теплообменники условия снижения низкотемпературной коррозии поверхностей нагрева обеспечиваются в полной мере.

6. Для воздухоподогревателей паровых котлов полное исключение низкотемпературной коррозии обеспечивается при расчетной температуре стенки наиболее холодного участка, превышающей температуру точки росы при всех нагрузках котла на 5 - 10 °С (минимальное значение относится к минимальной нагрузке).

7. Расчет температуры стенки трубчатых (ТВП) и регенеративных (РВП) воздухоподогревателей выполняется по рекомендациям «Теплового расчета котельных агрегатов. Нормативный метод» (М.: Энергия, 1973).

8. При применении в трубчатых воздухоподогревателях в качестве первого (по воздуху) хода сменяемых холодных кубов или кубов из труб с кислостойким покрытием (эмалированные и т.п.), а также изготовленных из коррозионностойких материалов на условия полного исключения низкотемпературной коррозии проверяются следующие за ними (по воздуху) металлические кубы воздухоподогревателя. В этом случае выбор температуры стенки холодных металлических кубов сменяемых, а также коррозионностойких кубов, должен исключать интенсивное загрязнение труб, для чего их минимальная температура стенки при сжигании сернистых мазутов должна быть ниже точки росы дымовых газов не более чем на 30 - 40 °С. При сжигании твердых сернистых топлив минимальная температура стенки трубы по условиям предупреждения интенсивного ее загрязнения должна приниматься не менее 80 °С.

9. В РВП на условиях полного исключения низкотемпературной коррозии рассчитывается их горячая часть. Холодная часть РВП выполняется коррозионностойкой (эмалированная, керамическая, из низколегированной стали и т.п.) или сменяемой из плоских металлических листов толщиной 1,0 - 1,2 мм, изготовленных из малоуглеродистой стали. Условия предупреждения интенсивного загрязнения набивки соблюдаются при выполнении требований п. настоящего документа.

10. В качестве эмалированной применяется набивка из металлических листов толщиной 0,6 мм. Срок службы эмалированной набивки, изготовленной в соответствии с ТУ 34-38-10336-89, составляет 4 года.

В качестве керамической набивки могут применяться фарфоровые трубки, керамические блоки, или фарфоровые пластины с выступами.

Учитывая сокращение потребления мазута тепловыми электростанциями, целесообразно применять для холодной части РВП набивку из низколегированной стали 10ХНДП или 10ХСНД, коррозионная стойкость которой в 2 - 2,5 раза выше, чем у малоуглеродистой стали.

11. Для защиты воздухоподогревателей от низкотемпературной коррозии в пусковой период следует выполнить мероприятия, изложенные в «Руководящих указаниях по проектированию и эксплуатации энергетических калориферов с проволочным оребрением» (М.: СПО Союзтехэнерго, 1981).

Растопку котла на сернистом мазуте, следует проводить с предварительно включенной системой подогрева воздуха. Температура воздуха перед воздухоподогревателем в начальный период растопки должна быть как правило, 90 °С.

11а. Для защиты воздухоподогревателей от низкотемпературной («стояночной») коррозии на остановленном котле, уровень которой примерно вдвое выше скорости коррозии в период эксплуатации, перед остановкой котла следует провести тщательную очистку воздухоподогревателей от наружных отложений. При этом перед остановом котла температуру воздуха на входе в воздухоподогреватель рекомендуется поддерживать на уровне ее значения при номинальной нагрузке котла.

Очистка ТВП осуществляется дробью с плотностью ее подачи не менее 0,4 кг/м.с (п. настоящего документа).

Для твердых топлив с учетом значительной опасности коррозии золоуловителей температура уходящих газов должна выбираться выше точки росы дымовых газов на 15 - 20 °С.

Для сернистых мазутов температура уходящих газов должна превышать температуру точки росы при номинальной нагрузке котла примерно на 10 °С.

В зависимости от содержания серы в мазуте следует принимать расчетное значение температуры уходящих газов при номинальной нагрузке котла, указанное ниже:

Температура уходящих газов, ºС...... 140 150 160 165

При сжигании сернистого мазута с предельно малыми избытками воздуха (α ≤ 1,02) температура уходящих газов может приниматься более низкой с учетом результатов измерений точки росы. В среднем переход от малых избытков воздуха к предельно малым снижает температуру точки росы на 15 - 20 °С.

На условия обеспечения надежной работы дымовой трубы и предупреждения выпадения влаги на ее стенки влияет не только температура уходящих газов, но также и их расход. Работа трубы с режимами нагрузки существенно ниже проектных увеличивает вероятность низкотемпературной коррозии.

При сжигании природного газа температуру уходящих газов рекомендуется иметь не ниже 80 °С.

13. При снижении нагрузки котла в диапазоне 100 - 50 % от номинальной следует стремиться к стабилизации температуры уходящих газов, не допуская ее снижения более, чем на 10 °С от номинальной.

Наиболее экономичным способом стабилизации температуры уходящих газов является повышение температуры предварительного подогрева воздуха в калориферах по мере снижение нагрузки.

Минимально допустимые значения температур предварительного подогрева воздуха перед РВП принимается в соответствии с п. 4.3.28 «Правил технической эксплуатации электрических станций и сетей» (М.: Энергоатомиздат, 1989).

В тех случаях, когда оптимальные температуры уходящих газов не могут быть обеспечены из-за недостаточной поверхности нагрева РВП, должны приниматься значения температур предварительного подогрева воздуха, при которых температура уходящих газов не превысит значений, приведенных в п. настоящих Методических указаний.

16. Ввиду отсутствия надежных кислотостойких покрытий для защиты от низкотемпературной коррозии металлических газоходов надежная работа их может быть обеспечена тщательной изоляцией, обеспечивающей разность температур между дымовыми газами и стенкой не более 5 °С.

Применяемые в настоящее время изоляционные материалы и конструкции недостаточно надежны в длительной эксплуатации, поэтому необходимо вести периодический, не реже одного раза в год, контроль за их состоянием и при необходимости выполнять ремонтно-восстановительные работы.

17. При использовании в опытном порядке для защиты газоходов от низкотемпературной коррозии различных покрытий следует учитывать, что последние должны обеспечивать термостойкость и газоплотность при температурах, превышающих температуру уходящих газов не менее чем на 10 °С, стойкость к воздействию серной кислоты концентрации 50 - 80 % в интервале температур соответственно 60 - 150 °С и возможность их ремонта и восстановления.

18. Для низкотемпературных поверхностей, конструкционных элементов РВП и газоходов котлов целесообразно использование низколегированных сталей 10ХНДП и 10ХСНД, превосходящих по коррозионной стойкости углеродистую сталь в 2 - 2,5 раза.

Абсолютной коррозионной стойкостью обладают лишь весьма дефицитные и дорогие высоколегированные стали (например, сталь ЭИ943, содержащая до 25 % хрома и до 30 % никеля).

Приложение

1. Теоретически температура точки росы дымовых газов с заданным содержанием паров серной кислоты и воды может быть определена как температура кипения раствора серной кислоты такой концентрации, при которой над раствором имеется то же самое содержание паров воды и серной кислоты.

Измеренное значение температуры точки росы в зависимости от методики измерения может не совпадать с теоретическим. В данных рекомендациях за температуру точки росы дымовых газов t р принята температура поверхности стандартного стеклянного датчика с впаянными на расстоянии 7 мм один от другого платиновыми электродами длиной 7 мм, при которой сопротивление пленки росы между электродами в установившемся состоянии равно 10 7 Ом. В измерительной цепи электродов используется переменный ток низкого напряжения (6 - 12 В).

2. При сжигании сернистых мазутов с избытками воздуха 3 - 5 % температура точки росы дымовых газов зависит от содержания серы в топливе S p (рис.).

При сжигании сернистых мазутов с предельно низкими избытками воздуха (α ≤ 1,02) температура точки росы дымовых газов должна приниматься по результатам специальных измерений. Условия перевода котлов в режим с α ≤ 1,02 изложены в «Руководящих указаниях по переводу котлов, работающих на сернистых топливах, в режим сжигания с предельно малыми избытками воздуха» (М.: СПО Союзтехэнерго, 1980).

3. При сжигании сернистых твердых топлив в пылевидном состоянии температура точки росы дымовых газов t p может быть подсчитана по приведенному содержанию в топливе серы и золы S р пр , А р пр и температуре конденсации водяных паров t кон по формуле

где a ун - доля золы в уносе (обычно принимается 0,85).

Рис. 1. Зависимость температуры точки росы дымовых газов от содержания серы в сжигаемом мазуте

Значение первого члена этой формулы при a ун = 0,85 можно определить по рис. .

Рис. 2. Разности температур точки росы дымовых газов и конденсации водяных паров в них в зависимости от приведенных содержаний серы (S р пр ) и золы (А р пр ) в топливе

4. При сжигании газообразных сернистых топлив точка росы дымовых газов может быть определена по рис. при условии, что содержание серы в газе рассчитывается как приведенное, то есть в процентах по массе на 4186,8 кДж/кг (1000 ккал/кг) теплоты сгорания газа.

Для газового топлива приведенное содержание серы в процентах по массе может быть определено по формуле

где m - число атомов серы в молекуле серосодержащего компонента;

q - объемный процент серы (серосодержащего компонента);

Q н - теплота сгорания газа в кДж/м 3 (ккал/нм 3);

С - коэффициент, равный 4,187, если Q н выражено в кДж/м 3 и 1,0, если в ккал/м 3 .

5. Скорость коррозии сменяемой металлической набивки воздухоподогревателей при сжигании мазута зависит от температуры металла и степени коррозионной активности дымовых газов.

При сжигании сернистого мазута с избытком воздуха 3 - 5 % и обдувке поверхности паром скорость коррозии (с двух сторон в мм/год) набивки РВП ориентировочно может быть оценена по данным табл. .

Таблица 1

Таблица 2

До 0,1

Содержание в мазуте серы S p , %

Скорость коррозии (мм/год) при температуре стенки, °С

75 - 95

96 - 100

101 - 110

111 - 115

116 - 125

Менее 1,0

0,10

0,20

0,30

0,20

0,10

1 - 2

0,10

0,25

0,40

0,30

0,15

Более 2

131 - 140

Более 140

До 0,1

0,10

0,15

0,10

0,10

0,10

Св. 0,11 до 0,4 вкл.

0,10

0,20

0,10

0,15

0,10

Св. 0,41 до 1,0 вкл.

0,15

0,25

0,30

0,35

0,20

0,30

0,15

0,10

0,05

Св. 0,11 до 0,4 вкл.

0,20

0,40

0,25

0,15

0,10

Св. 0,41 до 1,0 вкл.

0,25

0,50

0,30

0,20

0,15

Свыше 1,0

0,30

0,60

0,35

0,25

0,15

6. Для углей с высоким содержанием окиси кальция в золе температуры точки росы оказываются ниже вычисленных по п. настоящих Методических указаний. Для таких топлив рекомендуется использовать результаты непосредственных измерений.

Что такое Гидро-Икс:

Гидро-Икс (Hydro-X) называют изобретен­ный в Дании 70 лет назад метод и раствор, обес­печивающие необходимую коррекционную обра­ботку воды для систем отопления и котлов как водогрейных, так и паровых с низким давлением пара (до 40 атм). При использовании метода Гид­ро-Икс в циркулирующую воду добавляется толь­ко один раствор, поставляемый к потребителю в пластиковых канистрах или бочках в уже готовом для использования виде. Это позволяет не иметь на предприятиях специальных складов для хими­ческих реагентов, цеха для приготовления необ­ходимых растворов и т. п.

Использование Гидро-Икс обеспечивает поддержание необходимой величины рН, очистку воды от кислорода и свободной углекислоты, пре­дотвращение появления накипи, а при ее наличии отмывку поверхностей, а также предохранение от коррозии.

Гидро-Икс представляет собой прозрачную желтовато-коричневую жидкость, однородную, сильно щелочную, с удельным весом около 1,19 г/см при 20 °С. Ее состав стабилен и даже при длительном хранении не имеет место разделение жидкости или выпадение осадка, так что нет нуж­ды в перемешивании перед употреблением. Жид­кость не огнеопасна.

Достоинства метода Гидро-Икс – про­стота и эффективность водоподготовки.

При работе водонагревательных систем, включающих теплообменники, водогрейные или паровые котлы, как правило, производится их подпитка добавочной водой. Для предотвращения появления накипи необходимо осуществлять водоподготовку с целью уменьшения содержания шлама и солей в котловой воде. Водоподготовка может быть осуществлена, например, за счет ис­пользования умягчающих фильтров, применения обессоливания, обратного осмоса и др. Даже по­сле такой обработки остаются проблемы, связан­ные с возможным протеканием коррозии. При до­бавке в воду каустической соды, тринатрийфосфата и т. п., также остается проблема коррозии, а для паровых котлов и загрязнение пара.

Достаточно простым методом, предотвра­щающим появление накипи и коррозию, является метод Гидро-Икс, согласно которому добавляется в котловую воду небольшое количество уже при­готовленного раствора, содержащего 8 органиче­ских и неорганических компонентов. Достоинства метода заключаются в следующем:

– раствор поступает к потребителю в уже готовом для использования виде;

– раствор в небольших количествах вводит­ся в воду либо вручную, либо с помощью насоса-дозатора;

– при использовании Гидро-Икс нет необхо­димости применять другие химические вещества;

– в котловую воду подается примерно в 10 раз меньше активных веществ, чем при примене­нии традиционных методов обработки воды;

Гидро-Икс не содержит токсичных компо­нентов. Кроме гидроксида натрия NaOH и тринатрийфосфата Na3PO4 все остальные вещества из­влечены из нетоксичных растений;

– при использовании в паровых котлах и ис­парителях обеспечивается чистый пар и предот­вращается возможность вспенивания.

Состав Гидро-Икс.

Раствор включает восемь различных веществ как органических, так и неорганических. Механизм действия Гидро-Икс носит комплексный физико-химический характер.

Направление воздействия каждой состав­ляющей примерно следующее.

Гидроксид натрия NaOH в количестве 225 г/л уменьшает жесткость воды и регулирует зна­чение рН, предохраняет слой магнетита; тринатрийфосфат Na3PO4 в количестве 2,25 г/л – пре­дотвращает образование накипи и защищает по­верхность из железа. Все шесть органических соеди­нений в сумме не превышают 50 г/л и включают лигнин, танин, крахмал, гликоль, альгинат и маннуронат натрия. Общее количество базовых ве­ществ NaOH и Na3PO4 при обработке воды Гидро-Икс очень мало, примерно в десять раз меньше, чем используют при традиционной обработке, согласно принципу стехиометрии.

Влияние компонентов Гидро-Икс скорее физическое, чем химическое.

Органические добавки служат следующим целям.

Альгинат и маннуронат натрия используют­ся вместе с некоторыми катализаторами и спо­собствуют осаждению солей кальция и магния. Танины поглощают кислород и создают защитный от коррозии слой железа. Лигнин действует по­добно танину, а также способствует удалению имеющейся накипи. Крахмал формирует шлам, а гликоль препятствует вспениванию и уносу капель влаги. Неорганические соединения поддерживают необходимую для эффективного действия орга­нических веществ слабо щелочную среду, служат индикатором концентрации Гидро-Икс.

Принцип действия Гидро-Икс.

Решающую роль в действии Гидро-Икс ока­зывают органические составляющие. Хотя они присутствуют в минимальных количествах, за счет глубокого диспергирования их активная реакцион­ная поверхность достаточно велика. Молекуляр­ный вес органических составляющих Гидро-Икс значителен, что обеспечивает физический эф­фект притягивания молекул загрязнителей воды. Этот этап водоподготовки протекает без химиче­ских реакций. Поглощение молекул загрязнителей нейтрально. Это позволяет собрать все такие мо­лекулы, как создающие жесткость, так и соли же­леза, хлориды, соли кремниевой кислоты и др. Все загрязнители воды осаждаются в шламе, ко­торый подвижен, аморфен и не слипается. Это предотвращает возможность образования накипи на поверхностях нагрева, что является сущест­венным достоинством метода Гидро-Икс.

Нейтральные молекулы Гидро-Икс погло­щают как положительные, так и отрицательные ионы (анионы и катионы), которые в свою очередь взаимно нейтрализуются. Нейтрализация ионов непосредственно влияет на уменьшение электро­химической коррозии, поскольку этот вид коррозии связан с различным электрическим потенциалом.

Гидро-Икс эффективен против коррозионно опасных газов – кислорода и свободной углекислоты. Концентрация Гидро-Икс в 10 ррт вполне достаточна, чтобы предотвратить этот вид корро­зии независимо от температуры среды.

Каустическая сода может привести к появ­лению каустической хрупкости. Применение Гид­ро-Икс уменьшает количество свободных гидроксидов, значительно снижая риск каустической хрупкости стали.

Без остановки системы для промывки процесс Гидро-Икс позволяет удалить старые су­ществующие накипи. Это происходит благодаря наличию молекул лигнина. Эти молекулы прони­кают в поры котловой накипи и разрушают ее. Хо­тя все же следует отметить, что, если котел силь­но загрязнен, экономически целесообразнее про­вести химическую промывку, а затем уже для предотвращения накипи использовать Гидро-Икс, что уменьшит его расход.

Образовавшийся шлам собирается в шламонакопителях и удаляется из них путем перио­дических продувок. В качестве шламонакопителей могут использоваться фильтры (грязевики), через которые пропускается часть возвращаемой в ко­тел воды.

Важно, чтобы образовавшийся под дейст­вием Гидро-Икс шлам по возможности удалялся ежедневными продувками котла. Величина про­дувки зависит от жесткости воды и типа предпри­ятия. В начальный период, когда происходит очи­стка поверхностей от уже имеющегося шлама и в воде находится значительное содержание загряз­няющих веществ, продувка должна быть больше. Продувка проводится полным открытием проду­вочного клапана на 15-20 секунд ежедневно, а при большой подпитке сырой воды 3-4 раза в день.

Гидро-Икс может применяться в отопитель­ных системах, в системах централизованного теп­лоснабжения, для паровых котлов невысокого давления (до 3,9 МПа). Одновременно с Гидро-Икс никакие другие реагенты не должны быть ис­пользованы, кроме сульфита натрия и соды. Само собой разумеется, что реагенты для добавочной воды не относятся к этой категории.

В первые несколько месяцев эксплуатации расход реагента следует несколько увеличить, с целью устранения существующей в системе наки­пи. Если есть опасение, что пароперегреватель котла загрязнен отложениями солей, его следует очистить другими методами.

При наличии внешней системы водоподготовки необходимо выбрать оптимальный режим эксплуатации Гидро-Икс, что позволит обеспе­чить общую экономию.

Передозировка Гидро-Икс не сказывается отрицательно ни на надежности работы котла, ни на качестве пара для паровых котлов и влечет лишь увеличение расхода самого реагента.

Паровые котлы

В качестве добавочной воды используется сырая вода.

Постоянная дозировка: 0,2 л Гидро-Икс на каждый метр кубический добавочной воды и 0,04 л Гидро-Икс на каждый метр кубический конденсата.

В качестве добавочной воды умягченная вода.

Начальная дозировка: 1 л Гидро-Икс на каждый метр кубический воды в котле.

Постоянная дозировка: 0,04 л Гидро-Икс на каждый метр кубический добавочной воды и конденсата.

Дозировка для очистки котла от накипи: Гидро-Икс дозируется в количестве на 50 % больше посто­янной дозы.

Системы теплоснабжения

В качестве подпиточной воды – сырая вода.

Начальная дозировка: 1 л Гидро-Икс на каждый метр кубический воды.

Постоянная дозировка: 1 л Гидро-Икс на каждый метр кубический подпиточной воды.

В качестве подпиточной воды – умягченная вода.

Начальная дозировка: 0,5 л Гидро-Икс на каждый метр кубический воды.

Постоянная дозировка: 0,5 л Гидро-Икс на каждый метр кубический подпиточной воды.

На практике дополнительная дозировка основыва­ется на результатах анализов величины рН и жесткости.

Измерение и контроль

Нормальная дозировка Гидро-Икс состав­ляет в сутки примерно 200-400 мл на тонну доба­вочной воды при средней жесткости 350 мкгэкв/дм3 в расчете на СаСО3, плюс 40 мл на тонну обратной воды. Это, разумеется, ориентировочные цифры, а более точно дозирование может быть установ­лено контролем за качеством воды. Как уже отме­чалось, передозировка не нанесет никакого вреда, но правильная дозировка позволит экономить средства. Для нормальной эксплуатации прово­дится контроль жесткости (в расчете на СаСО3), суммарной концентрации ионогенных примесей, удельной электропроводности, каустической ще­лочности, показателя концентрации водородных ионов (рН) воды. Благодаря простоте и большому диапазону надежности Гидро-Икс может приме­няться как ручным дозированием, так и в автома­тическом режиме. При желании потребитель мо­жет заказать систему контроля и компьютерного управления процессом.

  • Галустов В.С. Прямоточные распылительные аппараты в теплоэнергетике (Документ)
  • Филонов А.Г. Водно-химические режимы теплоэнергетических установок (Документ)
  • Физико-химические процессы в техносфере. Сборник задач (Документ)
  • Орлов Д.С. Химия почв (Документ)
  • n1.doc

    3.4. Коррозия элементов парогенераторов
    3.4.1. Коррозия парообразующих труб и барабанов парогенераторов
    во время их эксплуатации

    Коррозионные повреждения металлов парогенераторов обусловлены действием одного или нескольких факторов: чрезмерного теплонапряжения поверхности нагрева, вялой циркуляции воды, застоя пара, напряженного металла, отложения примесей и других факторов, препятствующих нормальному омыванию и охлаждению поверхности нагрева.

    При отсутствии этих факторов нормальная магнетитная пленка легко образуется и сохраняется в воде с нейтральной или умеренно щелочной реакцией среды, не содержащей растворенного кислорода. В присутствии же О 2 кислородной коррозии могут подвергаться входные участки водяных экономайзеров, барабаны и опускные трубы циркуляционных контуров. Особенно отрицательно сказываются малые скорости движения воды (в водяных экономайзерах, так как при этом пузырьки выделяющегося воздуха задерживаются в местах шероховатостей внутренней поверхности труб и вызывают интенсивную местную кислородную коррозию. Коррозия углеродистой стали в водной среде при высоких температурах включает две стадии: начальную электрохимическую и конечную химическую. Согласно этому механизму коррозии, ионы двухвалентного железа диффундируют через окисную пленку к поверхности контакта ее с водой, реагируют с гидроксилом или с водой с образованием гидрата закиси железа, который затем распадается на магнетит и водород по реакции:


    .

    (2.4)

    Электроны, проходящие наряду с ионами железа через окисную пленку, ассимилируются ионами водорода с выделением Н 2 . С течением времени толщина окисной пленки увеличивается, а диффузия через нее затрудняется. Вследствие этого наблюдается уменьшение скорости коррозии со временем.

    Нитритная коррозия. При наличии в питательной воде нитрита натрия наблюдается коррозия металла парогенератора, имеющая по внешнему виду большое сходство с кислородной коррозией. Однако в отличие от нее нитритная коррозия поражает не входные участки опускных труб, а внутреннюю поверхность теплонапряженных подъемных труб и вызывает образование более глубоких язвин диаметром до 15–20 мм. Нитриты ускоряют протекание катодного процесса, а тем самым и коррозию металла парогенератора. Течение процесса при нитритной коррозии может быть описано следующей реакцией:


    .

    (2.5)

    Гальванокоррозия металла парогенератора. Источником гальванокоррозии парообразующих труб может явиться медь, попадающая в парогенераторы в тех случаях, когда питательная вода, содержащая повышенное количество аммиака, кислорода и свободной углекислоты, агрессивно воздействует на латунные и медные трубы регенеративных подогревателей. Необходимо отметить, что гальванокоррозию может вызвать лишь металлическая медь, отложившаяся на стенках парогенератора. При поддержании значения рН питательной воды выше 7,6 медь поступает в парогенераторы в форме окислов или комплексных соединений, которые не обладают коррозионно-агрессивными свойствами и отлагаются на поверхностях нагрева в виде шлама. Ионы меди, присутствующие в питательной воде с низким значением рН, попадая далее в парогенератор, в условиях щелочной среды также осаждаются в виде шламообразных окислов меди. Однако под действием выделяющегося в парогенераторах водорода или избытка сульфита натрия окислы меди могут полностью восстанавливаться до металлической меди, которая, отложившись на поверхностях нагрева, приводит к электрохимической коррозии металла котла.

    Подшламовая (ракушечная) коррозия . Подшламовая коррозия возникает в застойных зонах циркуляционного контура парогенератора под слоем шлама, состоящего из продуктов коррозии металлов и фосфатной обработки котловой воды. Если эти отложения сосредоточены на обогреваемых участках, то под ними возникает интенсивное упаривание, повышающее солесодержание и щелочность котловой воды до опасных значений.

    Подшламовая коррозия распространяется в виде больших язвин диаметром до 50–60 мм на внутренней стороне парообразующих труб, обращенной к факелу топки. В пределах язвин наблюдается сравнительно равномерное уменьшение толщины стенки трубы, часто приводящее к образованию свищей. На язвинах обнаруживается плотный слой окислов железа в виде ракушек. Описанное разрушение металла получило в литературе название «ракушечной» коррозии. Подшламовая коррозия, вызываемая окислами трехвалентного железа и двухвалентной меди, является примером комбинированного разрушения металла; первая стадия этого процесса является чисто электрохимической, а вторая – химической, обусловленной действием воды и водяного пара на перегретые участки металла, находящиеся под слоем шлама. Наиболее эффективным средством борьбы с «ракушечной» коррозией парогенераторов является предотвращение возникновения коррозии тракта питательной воды и выноса из него окислов железа и меди с питательной водой.

    Щелочная коррозия. Расслоение пароводяной смеси, которое имеет место в горизонтальных или слабонаклонных парообразующих трубах, как известно, сопровождается образованием паровых мешков, перегревом металла и глубоким упариванием пленки котловой воды. Образовавшаяся при упаривании котловой воды высококонцентрированная пленка содержит в растворе значительное количество щелочи. Едкий натр, присутствующий в котловой воде в малых концентрациях, защищает металл от коррозии, но он становится весьма опасным коррозионным фактором, если на каких-либо участках поверхности парогенератора создаются условия для глубокого упаривания котловой воды с образованием повышенной концентрации NaOH.

    Концентрация едкого натра в упариваемой пленке котловой воды зависит:

    А) от степени перегрева стенки парообразующей трубы по сравнению с температурой кипения при данном давлении в парогенераторе, т.е. величины?t s ;

    Б) величин соотношений концентрации едкого натра и содержащихся в циркулирующейся воде натриевых солей, обладающих способностью сильно повышать температуру кипения воды при данном давлении.

    Если концентрация хлоридов в котловой воде значительно превышает в эквивалентном отношении концентрацию NaOH, то раньше чем последняя достигает в упаривающейся пленке опасных значений, содержание хлоридов в ней настолько возрастает, что температура кипения раствора превышает температуру перегретой стенки трубы, и дальнейшее выпаривание воды прекращается. Если же котловая вода содержит преимущественно едкий натр, то при величине?t s = 7 °С концентрация NaOH в пленке концентрированной воды составляет 10 %, а при
    ?t s = 30 °C достигает 35 %. Между тем экспериментальным путем установлено, что уже 5–10-процентные растворы едкого натра при температуре котловой воды выше 200 °С способны интенсивно корродировать металл обогреваемых участков и сварных швов с образованием рыхлой магнитной закись-окиси железа и одновременным выделением водорода. Щелочная коррозия имеет избирательный характер, продвигаясь вглубь металла преимущественно по зернам перлита и образуя сетку межкристаллитных трещин. Концентрированный раствор едкого натра способен при высоких температурах также растворять защитный слой окислов железа с образованием феррита натрия NaFeO 2 , который гидролизуется с образованием щелочи:




    (2.6)



    (2.7)

    Вследствие того, что щелочь в этом круговом процессе не расходуется, создается возможность непрерывного протекания коррозионного процесса. Чем выше температура котловой воды и концентрация едкого натра, тем интенсивнее протекает процесс щелочной коррозии. Установлено, что концентрированные растворы едкого натра не только разрушают защитную магнетитную пленку, но и тормозят ее восстановление после повреждения.

    Источником щелочной коррозии парогенераторов могут также явиться шламоотложения, способствующие глубокому упариванию котловой воды с образованием высококонцентрированного коррозионно-агрессивного раствора щелочи. Уменьшение относительной доли щелочи в общем солесодержании котловой воды и создание преобладающего содержания в последней таких солей, как хлориды, способны резко ослабить щелочную коррозию котельного металла. Устранение щелочной коррозии достигается также обеспечением чистоты поверхности нагрева и интенсивной циркуляцией на всех участках парогенератора, которая предотвращает глубокое упаривание воды.

    Межкристаллитная коррозия. Межкристаллитная коррозия появляется в результате взаимодействия котельного металла со щелочной котловой водой. Характерная особенность межкристаллитных трещин в том, что они возникают в местах наибольших напряжений в металле. Механические напряжения слагаются из внутренних напряжений, возникающих в процессе изготовления и монтажа парогенераторов барабанного типа, а также дополнительных напряжений, возникающих в процессе эксплуатации. Образованию межкристаллитных кольцевых трещин на трубах способствуют дополнительные статические механические напряжения. Они возникают в трубных контурах и в барабанах парогенератора при недостаточной компенсации температурных удлинений, а также вследствие неравномерного обогрева или охлаждения отдельных участков тела барабана или коллектора.

    Межкристаллитная коррозия протекает с некоторым ускорением: в начальный период разрушение металла происходит очень медленно и без деформации, а затем с течением времени скорость его резко возрастает и может принять катастрофические размеры. Межкристаллитную коррозию котельного металла нужно рассматривать прежде всего как частный случай электрохимической коррозии, протекающей по границам зерен напряженного металла, находящегося в контакте со щелочным концентратом котловой воды. Появление коррозионных микрогальванических элементов вызывается различием потенциалов между телами кристаллитов, выполняющих роль катодов. Роль анодов выполняют разрушающиеся грани зерен, потенциал которых вследствие механических напряжений металла в этом месте сильно понижен.

    Наряду с электрохимическими процессами существенную роль в развитии межкристаллитной коррозии играет атомарный водород, продукт разряда
    Н + -ионов на катоде коррозионных элементов; легко диффундируя в толщу стали, он разрушает карбиды и создает большие внутренние напряжения в металле котла вследствие появления в нем метана, что приводит к образованию тонких межкристаллитных трещин (водородное растрескивание). Кроме того, во время реакции водорода с включениями стали образуются различные газообразные продукты, что в свою очередь вызывает дополнительные разрывные усилия и способствует разрыхлению структуры, углублению, расширению и разветвлению трещин.

    Основным путем предотвращения водородной коррозии металла котла является устранение любых коррозионных процессов, приводящих к образованию атомарного водорода. Это достигается ослаблением наноса в парогенераторе окислов железа и меди, химической очисткой котлов, улучшением циркуляции воды и снижением местных повышенных тепловых нагрузок поверхности нагрева.

    Установлено, что межкристаллитная коррозия котельного металла в соединениях элементов парогенераторов возникает лишь при одновременном наличии местных растягивающих напряжений, близких или превышающих предел текучести, и при концентрации NаОН в котловой воде, накапливающейся в неплотностях соединений элементов котла, превышающей 5–6 %. Для развития межкристаллитных разрушений котельного металла существенное значение имеет не абсолютная величина щелочности, а доля едкого натра в общем солевом составе котловой воды. Установлено опытным путем, что если эта доля, т. е. относительная концентрация едкого натра в котловой воде составляет менее 10–15 % от суммы минеральных растворимых веществ, то такая вода, как правило, не является агрессивной.

    Пароводяная коррозия. В местах с дефективной циркуляцией, где пар застаивается и не сразу отводится в барабан, стенки труб под паровыми мешками подвергаются сильному местному перегреву. Это приводит к химической коррозии перегретого до 450 °С и выше металла парообразующих труб под действием высокоперегретого пара. Процесс коррозии углеродистой стали в высокоперегретом водяном паре (при температуре 450 – 470 °С) сводится к образованию Fe 3 O 4 и газообразного водорода:




    (2.8.)

    Отсюда следует, что критерием интенсивности пароводяной коррозии металла котла является увеличение содержания свободного водорода в насыщенном паре. Пароводяная коррозия парообразующих труб наблюдается, как правило, в зонах резкого колебания температуры стенки, где имеют место теплосмены, вызывающие разрушение защитной окисной пленки. При этом создается возможность непосредственного контакта перегретого металла трубы с водой или водяным паром и химического взаимодействия между ними.

    Коррозионная усталость. В барабанах парогенераторов и котельных трубах в том случае, если на металл воздействуют одновременно с коррозионной средой термические напряжения, переменные по знаку и величине, появляются глубоко проникающие в сталь трещины коррозионной усталости, которые могут иметь транскристаллитный, межкристаллитный либо смешанный характер. Как правило, растрескиванию котельного металла предшествует разрушение защитной окисной пленки, что ведет к значительной электрохимической неоднородности и, как следствие, к развитию местной коррозии.

    В барабанах парогенераторов трещины коррозионной усталости возникают при попеременном нагреве и охлаждении металла на небольших участках в местах соединения трубопроводов (питательной воды, периодической продувки, ввода раствора фосфата) и водоуказательных колонок с телом барабана. Во всех этих соединениях металл барабана охлаждается, если температура протекающей по трубе питательной воды меньше температуры насыщения при давлении в парогенераторе. Местное охлаждение стенок барабана с последующим обогревом их горячей котловой водой (в моменты прекращения питания) всегда сопряжено с появлением в металле высоких внутренних напряжений.

    Коррозионное растрескивание стали резко усиливается в условиях попеременного смачивания и высыхания поверхности, а также в тех случаях, когда движение по трубе пароводяной смеси имеет пульсирующий характер, т. е. часто и резко изменяются скорость движения пароводяной смеси и ее паросодержание, а также при своеобразном расслоении пароводяной смеси на отдельные «пробки» пара и воды, следующие друг за другом.

    3.4.2. Коррозия пароперегревателей
    Скорость пароводяной коррозии определяется преимущественно температурой пара и составом контактирующего с ним металла. Существенное значение в ее развитии имеют также величины теплообмена и температурных колебаний при работе пароперегревателя, вследствие которых может наблюдаться разрушение защитных окисных пленок. В среде перегретого пара с температурой больше
    575 °С на поверхности стали в результате пароводяной коррозии образуется FeO (вюстит):

    Установлено, что трубы, изготовленные из обычной малоуглеродистой стали, находясь в течение длительного времени под воздействием высокоперегретого пара, равномерно разрушаются с одновременным перерождением структуры металла и образованием плотного слоя окалины. В парогенераторах сверхвысокого и сверхкритического давлений при температуре перегрева пара 550 °С и выше наиболее теплонапряженные элементы пароперегревателя (выходные участки) обычно изготовляют из теплостойких аустенитных нержавеющих сталей (хромоникелевых, хромомолибденовых и др.). Эти стали в условиях совместного действия растягивающих напряжений и коррозионно-агрессивной среды подвержены растрескиванию. Большинство эксплуатационных повреждений пароперегревателей, характеризующихся коррозионным растрескиванием элементов из аустенит-ных сталей, обусловлено присутствием в паре хлоридов и едкого натра. Борьба с коррозионным растрескиванием деталей из аустенитных сталей осуществляется главным образом посредством поддержания безопасного водного режима парогенераторов.
    3.4.3. Стояночная коррозия парогенераторов
    При простоях парогенераторов или другого паросилового оборудования в холодном или горячем резерве либо на ремонте на поверхности металла под действием кислорода воздуха или влаги развивается так называемая стояночная коррозия. По этой причине простои оборудования без применения должных защитных мер от коррозии часто приводят к серьезным повреждениям, особенно в парогенераторах. Сильно страдают от стояночной коррозии пароперегреватели и парообразующие трубы переходных зон прямоточных парогенераторов. Одной из причин стояночной коррозии внутренней поверхности парогенераторов является наполнение их во время простоев водой, насыщенной кислородом. В этом случае особенно подвержен коррозии металл на границе вода – воздух. Если же парогенератор, оставленный на ремонт, полностью дренируется, то на внутренней поверхности его всегда остается пленка влаги при одновременном доступе кислорода, который, легко диффундируя через эту пленку, вызывает активную электрохимическую коррозию металла. Тонкая пленка влаги сохраняется довольно долго, так как атмосфера внутри парогенератора насыщена парами воды, особенно в том случае, если в него попадает пар через неплотности арматуры параллельно работающих парогенераторов. Если в воде, заполняющей резервный парогенератор, присутствуют хлориды, то это приводит к увеличению скорости равномерной коррозии металла, а если в ней содержится незначительное количество щелочи (меньше 100 мг/дм 3 NaOH) и кислород, то это способствует развитию язвенной коррозии.

    Развитию стояночной коррозии способствует также накапливающийся в парогенераторе шлам, который обычно удерживает влагу. По этой причине значительные коррозионные раковины – часто обнаруживаются в барабанах вдоль нижней образующей по их концам, т. е. на участках наибольшего скопления шлама. Особенно сильно подвержены коррозии участки внутренней поверхности парогенераторов, которые покрыты водорастворимыми солевыми отложениями, например змеевики пароперегревателей и переходная зона в прямоточных парогенераторах. Во время простоев парогенераторов эти отложения поглощают атмосферную влагу и расплываются с образованием на поверхности металла высококонцентрированного раствора натриевых солей, имеющего большую электропроводность. При свободном доступе воздуха процесс коррозии под солевыми отложениями протекает весьма интенсивно. Весьма существенным является то, что стояночная коррозия усиливает процесс разъедания металла котла во время работы парогенератора. Это обстоятельство следует считать главной опасностью стояночной коррозии. Образующаяся ржавчина, состоящая из окислов железа высокой валентности Fe(OH) 3 , во время работы парогенератора играет роль деполяризатора коррозионных микро- и макрогальванопар, что ведет к интенсификации коррозии металла в процессе эксплуатации агрегата. В конечном счете накопление ржавчины на поверхности металла котла приводит к подшламовой коррозии. Помимо этого, при последующем простое агрегата восстановленная ржавчина опять приобретает способность вызывать коррозию вследствие поглощения ею кислорода воздуха. Эти процессы циклически повторяются при чередовании простоев и работы парогенераторов.

    Средствами защиты парогенераторов от стояночной коррозии в периоды их простоя в резерве и на ремонте служат различные методы консервации.
    3.5. Коррозия паровых турбин
    Металл проточной части турбин может в процессе работы подвергаться коррозии в зоне конденсации пара, особенно при наличии в нем угольной кислоты, растрескиванию вследствие наличия в паре коррозионных агентов и стояночной коррозии при нахождении турбин в резерве или на ремонте. Особенно сильно подвергается стояночной коррозии проточная часть турбины при наличии в ней солевых отложений. Образующийся во время простоя турбины солевой раствор ускоряет развитие коррозии. Отсюда вытекает необходимость тщательной очистки от отложений лопаточного аппарата турбины перед длительным простоем ее.

    Коррозия в период простоя обычно имеет сравнительно равномерный характер, при неблагоприятных условиях она проявляется в виде многочисленных язвин, равномерно распределенных по поверхности металла. Местом протекания ее являются те ступени, где конденсируется влага, агрессивно воздействующая на стальные детали проточной части турбины.

    Источником появления влаги является прежде всего конденсация пара, заполняющего турбину после ее остановки. Конденсат частично остается на лопатках и диафрагмах, частично стекает и скапливается в корпусе турбины, так как он не отводится через дренажи. Количество влаги внутри турбины может увеличиваться вследствие просачивания пара из паропроводов отборов и противодавления. Внутренние части турбины всегда холоднее поступающего в турбину воздуха. Относительная влажность воздуха машинного зала весьма высока, поэтому достаточно незначительного охлаждения воздуха, чтобы наступила точка росы, и произошло выделение влаги на металлических деталях.

    Для устранения стояночной коррозии паровых турбин необходимо исключить возможность попадания пара в турбины во время нахождения их в резерве как со стороны паропровода перегретого пара, так и со стороны магистрали отборов, дренажных линий и т. д. Для поддержания поверхности лопаток, дисков и ротора в сухом виде применяется периодическое продувание внутренней полости резервной турбины потоком горячего воздуха (t = 80 ч 100 °C), подаваемого небольшим вспомогательным вентилятором через нагреватель (электрический или паровой).
    3.6. Коррозия конденсаторов турбин
    В условиях эксплуатации паросиловых установок нередко наблюдаются случаи коррозионных повреждений латунных конденсаторных труб как с внутренней стороны, омываемой охлаждающей водой, так и с наружной стороны. Интенсивно корродируют внутренние поверхности конденсаторных труб, охлаждаемые сильно минерализованными, солено-озерными водами, содержащими большое количество хлоридов, либо оборотными циркуляционными водами с повышенной минерализацией, и загрязненными взвешенными частицами.

    Характерной особенностью латуни как конструкционного материала является склонность ее к коррозии при совместном действии повышенных механических напряжений и среды, обладающей даже умеренными агрессивными свойствами. Коррозионные повреждения проявляются в конденсаторах с латунными трубами в форме общего обесцинкования, пробочного обесцинкования, коррозионного растрескивания, ударной коррозии и коррозионной усталости. На протекание отмеченных форм коррозии латуни решающее воздействие оказывает состав сплава, технология изготовления конденсаторных труб и характер контактируемой среды. Вследствие обесцинкования разрушение поверхности латунных труб может носить сплошной слоевой характер или принадлежать к так называемому пробочному типу, являющемуся наиболее опасным. Пробочное обесцинкование характеризуется углубляющимися в металл язвинами, заполненными рыхлой медью. Наличие сквозных свищей вызывает необходимость замены трубы во избежание присоса охлаждающей сырой воды в конденсат.

    Проведенные исследования, а также длительные наблюдения за состоянием поверхности конденсаторных труб в действующих конденсаторах показали, что дополнительное введение в латунь небольших количеств мышьяка заметно снижает склонность латуней к обесцинкованию. Сложные по составу латуни, дополнительно легированные оловом или алюминием, также обладают повышенной коррозионной стойкостью благодаря способности этих сплавов быстро восстанавливать защитные пленки при их механическом разрушении. Вследствие применения металлов, занимающих различные места в потенциальном ряду и электрически соединенных, в конденсаторе возникают макроэлементы. Наличие переменного температурного поля создает возможность развития коррозионно-опасных ЭДС термоэлектрического происхождения. Блуждающие токи, возникающие при заземлении вблизи постоянного тока, также могут явиться причиной интенсивной коррозии конденсаторов.

    Коррозионные повреждения конденсаторных труб со стороны конденсирующегося пара чаще всего бывают связаны с присутствием в нем аммиака. Последний, будучи хорошим комплексообразователем по отношению к ионам меди и цинка, создает благоприятные условия для обесцинкования латуни. Кроме того, аммиак обусловливает коррозионное растрескивание латунных конденсаторных труб при наличии в сплаве внутренних или внешних растягивающих напряжений, которые постепенно расширяют трещины по мере развития коррозионного процесса. Установлено, что при отсутствии кислорода и других окислителей растворы аммиака не могут агрессивно воздействовать на медь и ее сплавы; поэтому можно не опасаться аммиачной коррозии латунных труб при концентрации аммиака в конденсате до 10 мг/дм 3 и отсутствии кислорода. При наличии же даже небольшого количества кислорода аммиак разрушает латунь и другие медные сплавы при концентрации 2–3 мг/дм 3 .

    Коррозии со стороны пара в первую очередь могут подвергаться латунные трубы охладителей выпара, эжекторов и камер отсоса воздуха конденсаторов турбин, где создаются условия, благоприятствующие попаданию воздуха и возникновению местных повышенных концентраций аммиака в частично сконденсированном паре.

    Для предотвращения коррозии конденсаторных труб с водяной стороны необходимо в каждом конкретном случае при выборе металла или сплавов, пригодных для изготовления этих труб, учитывать их коррозионную стойкость при заданном составе охлаждающей воды. Особо серьезное внимание выбору коррозионностойких материалов для изготовления конденсаторных труб должно быть уделено в тех случаях, когда конденсаторы охлаждаются проточной высокоминерализованной водой, а также в условиях восполнения потерь охлаждающей воды в оборотных системах водоснабжения ТЭС, пресными водами, обладающими повышенной минерализованностью, либо загрязненными коррозионноагрессивными промышленными и бытовыми стоками.
    3.7. Коррозия оборудования подпиточного и сетевого трактов
    3.7.1. Коррозия трубопроводов и водогрейных котлов
    Ряд электростанций использует для подпитки тепловых сетей речные и водопроводные воды с низким значением рН и малой жесткостью. Дополнительная обработка речной воды на водопроводной станции обычно приводит к снижению рН, уменьшению щелочности и повышению содержания агрессивной углекислоты. Появление агрессивной углекислоты возможно также в схемах подкисления, применяемых для крупных систем теплоснабжения с непосредственным водоразбором горячей воды (2000–3000 т/ч). Умягчение воды по схеме Na катионирования повышает ее агрессивность вследствие удаления природных ингибиторов коррозии – солей жесткости.

    При плохо налаженной деаэрации воды и возможных повышениях концентраций кислорода и углекислоты из-за отсутствия дополнительных защитных мероприятий в системах теплоснабжения внутренней коррозии подвержены трубопроводы, теплообменные аппараты, аккумуляторные баки и другое оборудование.

    Известно, что повышение температуры способствует развитию коррозионных процессов, протекающих как с поглощением кислорода, так и с выделением водорода. С увеличением температуры выше 40 °С кислородная и углекислотная формы коррозии резко усиливаются.

    Особый вид подшламовой коррозии протекает в условиях незначительного содержания остаточного кислорода (при выполнении норм ПТЭ) и при количестве окислов железа более 400 мкг/дм 3 (в пересчете на Fe). Этот вид коррозии, ранее известный в практике эксплуатации паровых котлов, был обнаружен в условиях сравнительно слабого подогрева и отсутствия тепловых нагрузок. В этом случае рыхлые продукты коррозии, состоящие в основном из гидратированных трехвалентных окислов железа, являются активными деполяризаторами катодного процесса.

    При эксплуатации теплофикационного оборудования нередко наблюдается щелевая коррозия, т. е. избирательное, интенсивное коррозионное разрушение металла в щели (зазоре). Особенностью процессов, протекающих в узких зазорах, является пониженная концентрация кислорода по сравнению с концентрацией в объеме раствора и замедленный отвод продуктов коррозионной реакции. В результате накопления последних и их гидролиза возможно снижение рН раствора в щели.

    При постоянной подпитке тепловой сети с открытым водоразбором деаэрированной водой возможность образования сквозных свищей на трубопроводах полностью исключается только при нормальном гидравлическом режиме, когда во всех точках системы теплоснабжения постоянно поддерживается избыточное давление выше атмосферного.

    Причины язвенной коррозии труб водогрейных котлов и другого оборудования следующие: некачественная деаэрация подпиточной воды; низкое значение рН, обусловленное присутствием агрессивной углекислоты (до 10–15 мг/дм 3); накопление продуктов кислородной коррозии железа (Fe 2 O 3) на теплопередающих поверхностях. Повышенное содержание окислов железа в сетевой воде способствует заносу поверхностей нагрева котла железоокисными отложениями.

    Ряд исследователей признает важную роль в возникновении подшламовой коррозии процесса ржавления труб водогрейных котлов при их простоях, когда не принято должных мер для предупреждения стояночной коррозии. Очаги коррозии, возникающие под воздействием на влажные поверхности котлов атмосферного воздуха, продолжают функционировать при работе котлов.
    3.7.2. Коррозия трубок теплообменных аппаратов
    Коррозионное поведение медных сплавов существенно зависит от температуры и определяется наличием кислорода в воде.

    В табл. 3.1 приведены скорости перехода продуктов коррозии медно-никелевых сплавов и латуни в воду при высоком (200 мкг/дм 3) и низком
    (3 мкг/дм 3) содержании кислорода. Эта скорость приблизительно пропорциональна соответствующей скорости коррозии. Она значительно возрастает при увеличении концентрации кислорода и солесодержания воды.

    В схемах подкисления вода после декарбонизатора часто содержит до 5 мг/дм 3 углекислоты, при этом срок службы трубчатого пучка подогревателей из латуни Л-68 составляет 9–10 мес.
    Таблица 3.1

    Скорость перехода продуктов коррозии в воду с поверхности
    медно-никелевых сплавов и латуни в нейтральной среде, 10 -4 г/(м 2 ·ч)


    Материал

    Содержание О 2 , мкг/дм 3

    Температура, °С

    38

    66

    93

    121

    149

    МН 70-30
    МН 90-10
    ЛО-70-1

    3

    -

    3,8

    4,3

    3,2

    4,5

    Значительное влияние на коррозионное разрушение трубок оказывают образующиеся на поверхности твердые и мягкие отложения. Важен характер этих отложений. Если отложения способны фильтровать воду и в то же время могут задерживать на поверхности трубок медьсодержащие продукты коррозии, локальный процесс разрушения трубок усиливается. Отложения с пористой структурой (твердые отложения накипи, органические) особенно неблагоприятно сказываются на течении коррозионных процессов. С увеличением рН воды проницаемость карбонатных пленок возрастает, а с ростом ее жесткости – резко уменьшается. Этим объясняется, что в схемах с голодной регенерацией фильтров процессы коррозии протекают менее интенсивно, чем в схемах Na-катионирования. Сокращению срока службы трубок способствует также загрязнение их поверхности продуктами коррозии и другими отложениями, приводящее к образованию язв под отложениями. При своевременном удалении загрязнений можно существенно понизить локальную коррозию трубок. Ускоренный выход из строя подогревателей с латунными трубками наблюдается при повышенном солесодержании воды – более 300 мг/дм 3 , а концентрации хлоридов – более 20 мг/дм 3 .

    Средний срок эксплуатации трубок теплообменных аппаратов (3–4 года) может быть увеличен при изготовлении их из коррозионно-стойких материалов. Трубки из нержавеющей стали 1Х18Н9Т, установленные в подпиточном тракте на ряде ТЭЦ с маломинерализованной водой, эксплуатируются более 7 лет без признаков повреждений. Однако в настоящее время трудно рассчитывать на широкое применение нержавеющих сталей из-за высокой их дефицитности. Следует также иметь в виду, что эти стали подвержены питтинговой коррозии при повышенных температуре, солесодержании, концентрации хлоридов и загрязнении отложениями.

    При солесодержании подпиточной и сетевой воды выше 200 мг/дм 3 и хлор-ионов выше 10 мг/дм 3 необходимо ограничить использование латуни Л-68, особенно в подпиточном тракте до деаэратора независимо от схемы водопри-готовления. При использовании умягченной подпиточной воды, содержащей значительные количества агрессивной углекислоты (свыше 1 мг/дм 3), скорость движения потока в аппаратах с трубной системой из латуни должна превышать 1,2 м/с.

    Сплав МНЖ-5-1 следует использовать при температуре подпиточной воды теплосети выше 60 °С.
    Таблица 3.2

    Металл трубок теплообменных аппаратов в зависимости

    От схемы обработки подпиточной воды теплосети


    Схема обработки подпиточной воды

    Металл трубок теплообменников в тракте до деаэратора

    Металл трубок сетевых теплообменников

    Известкование

    Л-68, ЛА-77-2

    Л-68

    Na-катионирование

    ЛА-77-2, МНЖ-5-1

    Л-68

    Н-катионирование с голодной регенерацией фильтров

    ЛА-77-2, МНЖ-5-1

    Л-68

    Подкисление

    ЛА-77-2, МНЖ-5-1

    Л-68

    Мягкая вода без обработки

    Ж о = 0,5 ч 0,6 ммоль/дм 3 ,

    Щ о = 0,2 ч 0,5 ммоль/дм 3 ,

    РН = 6,5 ч 7,5


    ЛА-77-2, МНЖ-5-1

    Л-68

    3.7.3. Оценка коррозионного состояния действующих систем

    горячего водоснабжения и причины коррозии
    Системы горячего водоснабжения по сравнению с другими инженерными сооружениями (системами отопления, холодного водоснабжения и канализации) являются наименее надежными и долговечными. Если установленный и фактический сроки службы зданий оцениваются в 50–100 лет, а систем отопления, холодного водоснабжения и канализации в 20–25 лет, то для систем горячего водоснабжения при закрытой схеме теплоснабжения и выполнении коммуникаций из стальных труб без покрытий фактический срок службы не превышает 10 лет, а в отдельных случаях 2–3 года.

    Трубопроводы горячего водоснабжения без защитных покрытий подвержены внутренней коррозии и значительному загрязнению ее продуктами. Это приводит к снижению пропускной способности коммуникаций, росту гидравлических потерь и нарушениям в подаче горячей воды, особенно на верхние этажи зданий при недостаточных напорах городского водопровода. В крупных системах горячего водоснабжения от центральных тепловых пунктов зарастание трубопроводов продуктами коррозии нарушает регулирование разветвленных систем и ведет к перебоям в подаче горячей воды. Из-за интенсивной коррозии, особенно внешних сетей горячего водоснабжения от ЦТП, возрастают объемы текущих и капитальных ремонтов. Последние связаны с частыми перекладками внутренних (в домах) и внешних коммуникаций, нарушением благоустройства городских территорий внутри кварталов, длительным прекращением подачи горячей воды большому количеству потребителей при выходе из строя головных участков трубопроводов горячего водоснабжения.

    Коррозионные повреждения трубопроводов горячего водоснабжения от ЦТП в случае их совместной прокладки с разводящими сетями отопления приводят к затоплению последних горячей водой и их интенсивной внешней коррозии. При этом возникают большие трудности в обнаружении мест аварий, приходится выполнять большой объем земляных работ и ухудшать благоустройство жилых районов.

    При незначительных различиях в капиталовложениях на сооружение систем горячего, холодного водоснабжения и отопления эксплуатационные расходы, связанные с частой перекладкой и ремонтом коммуникаций горячего водоснабжения, несоизмеримо более высокие.

    Коррозия систем горячего водоснабжения и защита от нее приобретают особо важное значение в связи с размахом жилищного строительства в России. Тенденция укрупнения мощностей единичных установок приводит к разветвлению сети трубопроводов горячего водоснабжения, выполняемых, как правило, из обычных стальных труб без защитных покрытий. Все возрастающий дефицит воды питьевого качества обусловливает использование новых источников воды с высокой коррозионной активностью.

    Одной из основных причин, влияющих на состояние систем горячего водоснабжения, является высокая коррозионная активность нагретой водопроводной воды. Согласно исследованиям ВТИ, коррозионная активность воды независимо от источника водоснабжения (поверхностный или подземный) характеризуется тремя основными показателями: индексом равновесного насыщения воды карбонатом кальция, содержанием растворенного кислорода и суммарной концентрацией хлоридов и сульфатов. Ранее в отечественной литературе не приводилась классификация нагретой водопроводной воды по коррозионной активности в зависимости от показателей исходной воды.

    При отсутствии условий образования защитных карбонатных пленок на металле (j
    Данные наблюдений за действующими системами горячего водоснабжения указывают на значительное влияние находящихся в водопроводной воде хлоридов и сульфатов на коррозию трубопроводов. Так, воды даже с положительным индексом насыщения, но содержащие хлориды и сульфаты в концентрациях свыше 50 мг/дм 3 , являются коррозионно-активными, что обусловлено нарушением сплошности карбонатных пленок и снижением их защитного действия под влиянием хлоридов и сульфатов. При разрушении защитных пленок присутствующие в воде хлориды и сульфаты усиливают коррозию стали под действием кислорода.

    Исходя из принятой в теплоэнергетике шкалы коррозии и опытных данных ВТИ, по скорости коррозии стальных труб в нагретой питьевой воде предложена условная коррозионная классификация водопроводных вод при расчетной температуре 60 °С (табл. 3.3).

    Рис. 3.2. Зависимость глубинного показателя П коррозии стальных труб в нагретой водопроводной воде (60 °С) от расчетного индекса насыщения J:

    1, 2, 3 – поверхностный источник
    ; 4 – подземный источник
    ; 5 – поверхностный источник

    На рис. 3.2. приведены опытные данные по скорости коррозии в образцах стальных труб при различном качестве водопроводной воды. На графике прослеживается определенная закономерность снижения глубинного показателя коррозии (глубинной проницаемости) с изменением расчетного индекса насыщения воды (при содержании хлоридов и сульфатов до 50 мг/дм 3). При отрицательных значениях индекса насыщения глубинная проницаемость соответствует аварийной и сильной коррозии (точки 1 и 2); для речной воды с положительным индексом насыщения (точка 3) допустимой коррозии, а для артезианской воды (точка 4) – слабой коррозии. Обращает на себя внимание тот факт, что для артезианской и речной воды с положительным индексом насыщения и содержанием хлоридов и сульфатов менее 50 мг/дм 3 различия в глубинной проницаемости коррозии сравнительно невелики. Это значит, что в водах, склонных к образованию на стенках труб окисно-карбонатной пленки (j > 0), присутствие растворенного кислорода (высокое в поверхностной и незначительное в подземной воде) не оказывает заметного влияния на изменение глубинной проницаемости коррозии. Вместе с тем данные испытаний (точка 5) свидетельствуют о значительном росте интенсивности коррозии стали в воде с высокой концентрацией хлоридов и сульфатов (в сумме около 200 мг/дм 3), несмотря на положительный индекс насыщения (j = 0,5). Проницаемость коррозии в этом случае соответствует проницаемости в воде, имеющей индекс насыщения j = – 0,4. В соответствии с классификацией вод по коррозионной активности вода с положительным индексом насыщения и повышенным содержанием хлоридов и сульфатов относится к коррозионной.
    Таблица 3.3

    Классификация воды по коррозионной активности


    J при 60 °С

    Концентрация в холодной воде, мг/дм 3

    Коррозионная характеристика нагретой воды (при 60 °С)

    растворенного
    кислорода О 2

    хлоридов и сульфатов (в сумме)





    Любая

    Любая

    Сильнокоррозионная




    Любая

    >50

    Сильнокоррозионная



    Любая




    Коррозионная




    Любая

    >50

    Слабокоррозионная



    >5



    Слабокоррозионная







    Некоррозионная

    Разработанная ВТИ классификация (табл. 3.3) достаточно полно отражает влияние качества воды на ее коррозионные свойства, что подтверждается данными о фактическом коррозионном состоянии систем горячего водоснабжения.

    Анализ основных показателей водопроводной воды в ряде городов позволяет отнести большинство вод к типу сильнокоррозионных и коррозионных и только незначительную часть к типу слабокоррозионных и некоррозионных. Для большой доли источников характерна повышенная концентрация хлоридов и сульфатов (более 50 мг/дм 3), и есть примеры, когда эти концентрации в сумме достигают 400–450 мг/дм 3 . Столь значительное содержание хлоридов и сульфатов в водопроводных водах обусловливает их высокую коррозионную активность.

    При оценке коррозионной активности поверхностных вод необходимо учитывать непостоянство их состава в течение года. Для более надежной оценки следует пользоваться данными не единичных, а возможно большего числа анализов воды, выполненных в разные сезоны за один – два последних года.

    Для артезианских источников показатели качества воды обычно очень стабильны в течение года. Как правило, подземные воды характеризуются повышенной минерализацией, положительным индексом насыщения по карбонату кальция и высоким суммарным содержанием хлоридов и сульфатов. Последнее приводит к тому, что системы горячего водоснабжения в некоторых городах, получающие воду из артезианских скважин, также подвержены сильной коррозии.

    Когда в одном городе есть несколько источников питьевой воды, интенсивность и массовость коррозионных повреждений систем горячего водоснабжения могут быть различными. Так, в Киеве имеются три источника водоснабжения:
    р. Днепр, р. Десна и артезианские скважины. Наиболее сильной коррозии подвержены системы горячего водоснабжения в районах города, снабжаемых коррозионной днепровской водой, в меньшей степени – системы, эксплуатируемые на слабокоррозионной деснянской воде, и в еще меньшей степени – на артезианской воде. Наличие районов в городе с разной коррозионной характеристикой водопроводной воды сильно затрудняет организацию противокоррозионных мероприятий как на стадии проектирования, так и в условиях эксплуатации систем горячего водоснабжения.

    Для оценки коррозионного состояния систем горячего водоснабжения были проведены их обследования в ряде городов. Экспериментальные исследования скорости коррозии труб с помощью трубчатых и пластинчатых образцов были выполнены в районах нового жилищного строительства городов Москвы, Санкт-Петербурга и др. Результаты обследования показали, что состояние трубопроводов находится в прямой зависимости от коррозионной активности водопроводной воды.

    Существенное влияние на размеры коррозионных повреждений в системе горячего водоснабжения оказывает высокая централизация установок по нагреву воды на центральных тепловых пунктах или теплораспределительных станциях (ТРС). Первоначально широкое строительство ЦТП в России было обусловлено рядом причин: отсутствием в новых жилых домах подвальных помещений, пригодных для размещения оборудования горячего водоснабжения; недопустимостью установки обычных (не бесшумных) циркуляционных насосов в индивидуальных тепловых пунктах; ожидаемым сокращением обслуживающего персонала в результате замены сравнительно мелких подогревателей, устанавливаемых в индивидуальных тепловых пунктах, крупными; необходимостью повышения уровня эксплуатации ЦТП путем их автоматизации и улучшения обслуживания; возможностью сооружения крупных установок по противокоррозионной обработке воды для систем горячего водоснабжения.

    Однако как показал опыт эксплуатации ЦТП и систем горячего водоснабжения от них, количество обслуживающего персонала не сократилось из-за необходимости выполнять большой объем работ при текущем и капитальном ремонтах систем горячего водоснабжения. Централизованная противокоррозионная обработка воды на ЦТП не получила широкого распространения из-за сложности установок, высоких начальных и эксплуатационных затрат и отсутствия стандартного оборудования (вакуумная деаэрация).

    В условиях, когда для систем горячего водоснабжения применяются преимущественно стальные трубы без защитных покрытий, при высокой коррозионной активности водопроводных вод и отсутствии на ЦТП противокоррозионной обработки воды дальнейшее строительство только ЦТП, по-видимому, нецелесообразно. Строительство в последние годы домов новых серий с подвальными помещениями и производство бесшумных центробежных насосов будут способствовать переходу во многих случаях к проектированию индивидуальных тепловых пунктов (ИТП) и повышению надежности горячего водоснабжения.

    3.8. Консервация теплоэнергетического оборудования

    и теплосетей

    3.8.1. Общее положение

    Консервация оборудования – это защита от так называемой стояночной коррозии.

    Консервация котлов и турбоустановок для предотвращения коррозии металла внутренних поверхностей осуществляется при режимных остановках и выводе в резерв на определенный и неопределенный сроки: вывод – в текущий, средний, капитальный ремонт; аварийные остановы, в продолжительный резерв или ремонт, на реконструкцию на срок выше 6 месяцев.

    На основе производственной инструкции на каждой электростанции, котельной должно быть разработано и утверждено техническое решение по организации консервации конкретного оборудования, определяюще способы консервации при различных видах остановов и продолжительности простоя технологической схемы и вспомогательного оборудования.

    При разработке технологической схемы консервации целесообразно максимально использовать штатные установки коррекционной обработки питательной и котловой воды, установки химической очистки оборудования, баковое хозяйство электростанции.

    Технологическая схема консервации должна быть по возможности стационарной, надежно отключаться от работающих участков тепловой схемы.

    Необходимо предусматривать нейтрализацию или обезвреживание сбросных вод а, также возможность повторного использования консервирующих растворов.

    B соответствии с принятым техническим решением составляется и утверждается инструкция по консервации оборудования с указаниями по подготовительным операциям, технологии консервации и расконсервации, а также по мерам безопасности при проведении консервации.

    При подготовке и проведении работ по консервации и расконсервации необходимо соблюдать требования Правил техники безопасности при эксплуатации тепломеханического оборудования электростанций и тепловых сетей. Также при необходимости должны быть приняты дополнительные меры безопасности, связанные со свойствами используемых химических реагентов.

    Нейтрализация и очистка отработанных консервирующих растворов химических реагентов должна осуществляться в соответствии с директивными документами.
    3.8.2. Способы консервации барабанных котлов
    1. «Сухой» останов котла.

    Сухой останов применяется для котлов любых давлений при отсутствии в них вальцовочных соединений труб с барабаном.

    Сухой останов проводится при плановом останове в резерв или ремонт на срок до 30 суток, а также при аварийном останове.

    Методика сухого останова заключается в следующем.

    После останова котла в процессе его естественного остывания или расхолаживания дренирование начинается при давлении 0,8 – 1,0 МПа. Промежуточный пароперегреватель обеспаривают на конденсатор. После дренирования закрывают все вентили и задвижки пароводяной схемы котла.

    Дренирование котла при давлении 0,8 – 1,0 МПа позволяет после его опорожнения сохранить температуру металла в котле выше температуры насыщения при атмосферном давлении за счет тепла, аккумулированного металлом, обмуровкой и изоляцией. При этом происходит подсушка внутренних поверх­ностей барабана, коллекторов и труб.

    2. Поддержание в котле избыточного давления.

    Поддержание в котле давления выше атмосферного предотвращает доступ в него кислорода, воздуха. Избыточное давление поддерживается при протоке через котел деаэрированной воды. Консервация при поддержании избыточного давления применяется для котлов любых типов и давлений. Этот способ осуществляется при выводе котла в резерв или ремонт, не связанный с работами на поверхностях нагрева, на срок до 10 суток. На котлах с вальцовочными соединениями труб с барабаном допускается применение избыточного давления на срок до 30 суток.

    3. Кроме указанных способов консервации на барабанных котлах применяются:

    Гидразинная обработка поверхностей нагрева при рабочих параметрах котла;

    Гидразинная обработка при пониженных параметрах пара;

    Гидразинная «выварка» поверхностей нагрева котла;

    Трилонная обработка поверхностей нагрева котла;

    Фосфатно-аммиачная «выварка»;

    Заполнение поверхностей нагрева котла защитными щелочными раство­рами;

    Заполнение поверхностей нагрева котла азотом;

    Консервация котла контактным ингибитором.

    3.8.3. Способы консервации прямоточных котлов
    1. «Сухой» останов котла.

    Сухой останов применяется на всех прямоточных котлах независимо от принятого водно-химического режима. Он проводится при любых плановых и аварийных остановах на срок до 30 суток. Пар из котла частично выпускают в конденсатор так, чтобы в течение 20–30 мин давление в котле снизилось до
    30–40 кгс/см 2 (3–4 МПа). Открывают дренажи входных коллекторов и водяного экономайзера. При снижении давления до нуля котел обеспаривают на конденсатор. Вакуум поддерживают не менее 15 мин.

    2. Гидразинная и кислородная обработка поверхностей нагрева при рабочих параметрах котла.

    Гидразинная и кислородная обработка проводится в сочетании с сухим остановом. Методика проведения гидразинной обработки прямоточного котла такая же, как и барабанного.

    3. Заполнение поверхностей нагрева котла азотом.

    Заполнение котла азотом осуществляется при избыточном давлении в поверхностях нагрева. Консервация азотом применяется на котлах любых давлений на электростанциях, имеющих азот от собственных установок!

    4. Консервация котла контактным ингибитором.

    Консервация котла контактным ингибитором применяется для любых типов котлов независимо от применяемого водно-химического режима и проводится при выводе котла в резерв или ремонт на срок от 1 месяца до 2 лет.
    3.8.4. Способы консервации водогрейных котлов
    1. Консервация раствором гидроксида кальция.

    Защитная пленка сохраняется в течение 2–3 месяцев после опорожнения котла от раствора после 3–4 или более недель контакта. Гидроксид кальция применяется для консервации водогрейных котлов любых типов на электростанциях, котельных, имеющих водоподготовительные установки с известковым хозяйством. Способ основан на высокоэффективных ингибирующих способностях раствора гидроксида кальция Са(ОН) 2 . Защитной концентрацией гидроксида кальция является 0,7 г/дм 3 и выше. При контакте с металлом его устойчивая защитная пленка формируется в течение 3–4 недель.

    2. Консервация раствором силиката натрия.

    Силикат натрия применяется для консервации водогрейных котлов любых видов при выводе котла в резерв на срок до 6 месяцев или выводе котла в ремонт на срок до 2 месяцев.

    Силикат натрия (жидкое натриевое стекло) образует на поверхности металла прочную защитную пленку в виде соединения Fe 3 O 4 ·FeSiO 3 . Эта пленка экранирует металл от воздействия коррозионных агентов (СО 2 и О 2). При осуществлении данного способа водогрейный котел полностью заполняется раствором силиката натрия с концентрацией SiO 2 в консервирующем растворе не менее 1,5 г/дм 3 .

    Формирование защитной пленки происходит при выдержке консервирующего раствора в котле в течение нескольких суток или циркуляции раствора через котел в течение нескольких часов.
    3.8.5. Способы консервации турбоустановок
    Консервация подогретым воздухом. Продувка турбоустановки горячим воздухом предотвращает попадание во внутренние полости влажного воздуха и протекание коррозионных процессов. Особенно опасно попадание влаги на поверхности проточной части турбины при наличии на них отложений соединений натрия. Консервация турбоустановки подогретым воздухом проводится при выводе в резерв на срок 7 суток и более.

    Консервация азотом. При заполнении внутренних полостей турбоустановки азотом и поддержании в дальнейшем небольшого его избыточного давления предотвращается попадание влажного воздуха. Подачу азота в турбину начинают после останова турбины и окончания вакуумной сушки промежуточного пароперегревателя. Консервацию азотом можно применять и для паровых пространств бойлеров и подогревателей.

    Консервация коррозии летучими ингибиторами. Летучие ингибиторы коррозии типа ИФХАН защищают стали, медь, латунь, адсорбируясь на поверхности металла. Этот адсорбционный слой значительно снижает скорость электрохимических реакций, обусловливающих коррозионный процесс.

    Для консервации турбоустановки осуществляется просасывание через турбину воздуха, насыщенного ингибитором. Насыщение воздуха ингибитором происходит при контакте его с силикагелем, пропитанным ингибитором, так называемым линасилем. Пропитка линасиля осуществляется на заводе-изготовителе. Для поглощения избытка ингибитора на выходе из турбоустановки воздух проходит через чистый силикагель. Для консервации 1 м 3 объема требуется не менее 300 г линасиля, защитная концентрация ингибитора в воздухе составляет 0,015 г/дм 3 .
    3.8.6. Консервация тепловых сетей
    При силикатной обработке подпиточной воды образуется защитная пленка от воздействия СО 2 и О 2 . При этом с непосредственным разбором горячей воды содержание силиката в подпиточной воде должно быть не более 50 мг/дм 3 в пересчете на SiO 2 .

    При силикатной обработке подпиточной воды предельная концентрация кальция должна определяться с учетом суммарной концентрации не только сульфатов (для предотвращения выпадения CaSO 4), но и кремниевой кислоты (для предотвращения выпадения CaSiО 3) для заданной температуры нагрева сетевой воды с учетом труб котла 40 °C (ПТЭ 4.8.39).

    При закрытой системе теплоснабжения рабочая концентрация SiО 2 в консервирующем растворе может быть 1,5 – 2 г/дм 3 .

    Если не производить консервацию раствором силиката натрия, то тепловые сети в летний период должны быть всегда заполнены сетевой водой, отвечающей требованиям ПТЭ 4.8.40.

    3.8.7. Краткие характеристики применяемых химических реагентов
    для консервации и меры предосторожности при работе с ними

    Водный раствор гидразингидрата N 2 Н 4 ·Н 2 О

    Раствор гидразингидрата – бесцветная жидкость, легко поглощающая из воздуха воду, углекислоту и кислород. Гидразингидрат является сильным восстановителем. Токсичность (класс опасности) гидразина – 1.

    Водные растворы гидразина концентрацией до 30% не огнеопасны – перевозить и хранить их можно в сосудах из углеродистой стали.

    При работе с растворами гидразингидрата необходимо исключить попадание в них пористых веществ, органических соединений.

    К местам приготовления и хранения растворов гидразина должны быть подведены шланги для смыва водой пролитого раствора с оборудования. Для нейтрализации и обезвреживания должна быть приготовлена хлорная известь.

    Попавший на пол раствор гидразина следует засыпать хлорной известью и смыть большим количеством воды.

    Водные растворы гидразина могут вызывать дерматит кожи и раздражать дыхательные пути и глаза. Соединения гидразина попадая в организм, вызывают изменения в печени и крови.

    При работе с растворами гидразина необходимо пользоваться личными очками, резиновыми перчатками, резиновым передником, противогазом марки КД.

    Попавшие на кожу и в глаза капли раствора гидразина необходимо смыть большим количеством воды.
    Водный раствор аммиака NH 4 (OH )

    Водный раствор аммиака (аммиачная вода) – бесцветная жидкость с резким специфическим запахом. При комнатной температуре и особенно при нагревании обильно выделяет аммиак. Токсичность (класс опасности) аммиака – 4. Предельно допустимая концентрация аммиака в воздухе – 0,02 мг/дм 3 . Раствор аммиака обладает щелочной реакцией. При работе с аммиаком необходимо выполнять следующие требования техники безопасности:

    – раствор аммиака должен храниться в баке с герметичной крышкой;

    – пролитый раствор аммиака должен смываться большим количеством воды;

    – при необходимости ремонта оборудования, используемого для приготовления и дозирования аммиака, его следует тщательно промыть водой;

    – водный раствор и пары аммиака вызывают раздражение глаз, дыхательных путей, тошноту и головную боль. Особенно опасно попадание аммиака в глаза;

    – при работе с раствором аммиака необходимо использовать защитные очки;

    – попавший на кожу и в глаза аммиак необходимо смыть большим количеством воды.

    Трилон Б
    Товарный трилон Б – порошкообразное вещество белого цвета.

    Раствор трилона стоек, не разлагается при длительном кипячении. Растворимость трилона Б при температуре 20–40 °С составляет 108–137 г/дм 3 . Значение рН этих растворов около 5,5.

    Товарный трилон Б поставляется в бумажных мешках с полиэтиленовым вкладышем. Храниться реагент должен в закрытом сухом помещении.

    Заметного физиологического воздействия на организм человека трилон Б не оказывает.

    При работе с товарным трилоном необходимо применять респиратор, рукавицы и защитные очки.
    Тринатрийфосфат Na 3 PO 4 ·12Н 2 О
    Тринатрийфосфат – белое кристаллическое вещество, хорошо растворимое в воде.

    В кристаллическом виде специфического действия на организм не оказывает.

    В пылевидном состоянии, попадая в дыхательные пути или глаза раздражает слизистые оболочки.

    Горячие растворы фосфата опасны при попадании брызг в глаза.

    При проведении работ, сопровождающихся пылением, необходимо использовать респиратор и защитные очки. При работе с горячим раствором фосфата применять защитные очки.

    При попадании на кожу или в глаза надо смыть большим количеством воды.
    Едкий натр NaOH
    Едкий натр – белое, твердое, очень гигроскопичное вещество, хорошо растворимое в воде (при температуре 20 °С растворимость составляет 1070 г/дм 3).

    Раствор едкого натра – бесцветная жидкость тяжелее воды. Температура замерзания 6-процентного раствора минус 5 °С, 41,8-процентного – 0 °С.

    Едкий натр в твердом кристаллическом виде перевозится и хранится в стальных барабанах, а жидкая щелочь – в стальных емкостях.

    Попавший на пол едкий натр (кристаллический или жидкий) следует смыть водой.

    При необходимости ремонта оборудования, используемого для приготовления и дозирования щелочи, его следует промыть водой.

    Твердый едкий натр и его растворы вызывают сильные ожоги, особенно при попадании в глаза.

    При работе с едким натром необходимо предусмотреть аптечку, содержащую вату, 3-процентный раствор уксусной кислоты и 2-процентный раствор борной кислоты.

    Индивидуальные средства защиты при работе с едким натром – хлопчатобумажный костюм, защитные очки, прорезиненный фартук, резиновые сапоги, резиновые перчатки.

    При попадании щелочи на кожу ее необходимо удалить ватой, промыть пораженное место уксусной кислотой. При попадании щелочи в глаза необходимо промыть их струей воды, а затем раствором борной кислоты и обратиться в медпункт.
    Силикат натрия (жидкое стекло натриевое)
    Товарное жидкое стекло представляет собой густой раствор желтого или серого цвета, содержание SiO 2 в нем 31 – 33 %.

    Силикат натрия поступает в стальных бочках или цистернах. Жидкое стекло следует хранить в сухих закрытых помещениях при температуре не ниже плюс 5 °С.

    Силикат натрия – щелочной продукт, хорошо растворяется в воде при температуре 20 - 40 °С.

    При попадании на кожу раствора жидкого стекла его следует смыть водой.
    Гидроксид кальция (известковый раствор) Са(ОН) 2
    Известковый раствор – прозрачная жидкость без цвета и запаха, нетоксична и обладает слабой щелочной реакцией.

    Раствор гидроксида кальция получается при отстаивании известкового молока. Растворимость гидроксида кальция мала – не более 1,4 г/дм 3 при 25 °С.

    При работе с известковым раствором людям с чувствительной кожей рекомендуется работать в резиновых перчатках.

    При попадании раствора на кожу или в глаза необходимо смыть его водой.
    Контактный ингибитор
    Ингибитор М-1 является солью циклогексиламина (ТУ 113-03-13-10-86) и синтетических жирных кислот фракции С 10-13 (ГОСТ 23279-78). В товарном виде представляет собой пастообразное или твердое вещество от темно-желтого до коричневого цвета. Температура плавления ингибитора выше 30 °С, массовая доля циклогексиламина 31–34 %, pH спиртоводного раствора с массовой долей основного вещества 1 % равен 7,5–8,5; плотность водного раствора 3-процентного при температуре 20 °С составляет 0,995 – 0,996 г/дм 3 .

    Ингибитор М-1 поставляется в стальных барабанах, металлических флягах, стальных бочках. На каждом грузовом месте должна быть маркировка со следующими данными: наименование предприятия-изготовителя, наименование ингибитора, номер партии, дата изготовления, масса нетто, брутто.

    Товарный ингибитор относится к горючим веществам и должен храниться на складе в соответствии с правилами хранения горючих веществ. Водный раствор ингибитора не огнеопасен.

    Попавший на пол раствор ингибитора необходимо смыть большим количеством воды.

    При необходимости ремонта оборудования, используемого для хранения и приготовления раствора ингибитора, его следует тщательно промыть водой.

    Ингибитор М-1 относится к третьему классу (вещества умеренно опасные). ПДК в воздухе рабочей зоны для ингибитора не должна превышать 10 мг/дм 3 .

    Ингибитор химически устойчив, не образует токсичных соединений в воздухе и сточных водах в присутствии других веществ или факторов производственной сферы.

    Лица, занятые на работах с ингибитором, должны иметь хлопчатобумажный костюм или халат, рукавицы, головной убор.

    По окончании работ с ингибитором необходимо вымыть руки теплой водой с мылом.
    Летучие ингибиторы
    Летучий ингибитор атмосферной коррозии ИФХАН-1 (1-диэтиламино-2 метилбутанон-3) представляет собой прозрачную жидкость желтоватого цвета с резким специфическим запахом.

    Жидкий ингибитор ИФХАН-1 по степени воздействия относится к высокоопасным веществам. ПДК паров ингибитора в воздухе рабочей зоны не должна превышать 0,1 мг/дм 3 . Ингибитор ИФХАН-1 в высоких дозах вызывает возбуждение центральной нервной системы, раздражающее действие на слизистые оболочки глаз, верхних дыхательных путей. Длительное воздействие ингибитора на незащищенную кожу может вызвать дерматит.

    Ингибитор ИФХАН-1 химически устойчив и не образует токсичных соединений в воздухе и сточных водах в присутствии других веществ.

    Жидкий ингибитор ИФХАН-1 относится к легковоспламеняющимся жидкостям. Температура воспламенения жидкого ингибитора 47 °С, температура самовоспламенения 315 °С. При загорании применяются следующие средства пожаротушения: кошма, пенные огнетушители, огнетушители ОУ.

    Уборка помещений должна проводиться влажным способом.

    При работе с ингибитором ИФХАН-1 необходимо применять средства индивидуальной защиты – костюм из хлопчатобумажной ткани (халат), резиновые перчатки.

    Ингибитор ИФХАН-100 , также являющийся производным аминов, менее токсичен. Относительно безопасный уровень воздействия – 10 мг/дм 3 ; температура воспламенения 114 °С, самовоспламенения 241 °С.

    Меры безопасности при работе с ингибитором ИФХАН-100 те же, что и при работе с ингибитором ИФХАН-1.

    Запрещается проведение работ внутри оборудования до его расконсервации.

    При высоких концентрациях ингибитора в воздухе или при необходимости работы внутри оборудования после его расконсервации следует применять противогаз марки А с коробкой фильтрующей марки А (ГОСТ 12.4.121-83 и
    ГОСТ 12.4.122-83). Предварительно оборудование следует провентилировать. Работы внутри оборудования после расконсервации следует проводить бригадой из двух человек.

    После окончания работы с ингибитором необходимо вымыть руки с мылом.

    В случае попадания жидкого ингибитора на кожу надо смыть его водой с мылом, при попадании в глаза - промыть их обильной струей воды.
    Контрольные вопросы


    1. Виды коррозионных процессов.

    2. Охарактеризуйте химическую и электрохимическую коррозию.

    3. Влияние внешних и внутренних факторов на коррозию металла.

    4. Коррозия конденсатно-питательного тракта котлоагрегатов и тепловых сетей.

    5. Коррозия паровых турбин.

    6. Коррозия оборудования подпиточного и сетевого трактов теплосети.

    7. Основные способы обработки воды для снижения интенсивности коррозии теплосети.

    8. Цель консервации теплоэнергетического оборудования.

    9. Перечислите способы консервации:
    а) паровых котлов;

    Б) водогрейных котлов;

    В) турбоустановок;

    Г) тепловых сетей.

    10. Дайте краткую характеристику применяемых химических реагентов.

    Похожие статьи

    • Какую говядину лучше варить

      Покупка мяса - это самая существенная часть продовольственного бюджета любой семьи (за исключением вегетарианской). Кто-то предпочитает свинину, кто-то птицу, однако наиболее полезной и питательной считается говядина. Это мясо не самое...

    • Какие социальные сети существуют для общения с друзьями и родственниками

      Сегодня соцсети настолько прочно укоренились в нашей жизни, что состав пятерки самых популярных социальных площадок практически не меняется из года в год. Тем не менее, масштабы проникновения и использования этих соцсетей отличаются в...

    • Обзор самых новых лекарств от рака

      Предлагаю вашему вниманию простые, проверенные временем, средства народной медицины, которые помогут при онкологических заболеваниях .Звездчатка (мокрица). Сок растения, крепкий настой и отвар применяется для местных ванн и примочек при...

    • Самые действенные способы защиты от сглаза, порчи, колдовства, зависти

      Признаками магического нападения могут являться: любые физические, психоэмоциональные отклонения без особой на-то причины. С целью защиты в отражения удара в той же самой магии выработаны довольно мощные приемы, которые отрабатывались не...

    • Что значит "поставить крест"

      О каком кресте говорил Иисус своим ученикам? Куда они должны были следовать со своим крестом? Что такое крестный ход? Что означают выражения: «Креста на тебе нет!» или «Поставить на нем крест!» ВСЕСЛАВЪ (ГЛОБА Игорь Александрович),...

    • К чему снятся венки похоронные в доме

      Сны не могут не поражать своей парадоксальностью. Часто тот или иной негатив, увиденный во сне, на деле оборачивается счастьем и удачей, а позитивные вещи и явления сулят несчастья и разочарования в реальной объективной действительности....