Испаритель погружной для охлаждения воды расчет. Подбор теплообменного оборудования

Подробности

Расчет чиллера. Как расчитать холодопроизводительность или мощность чиллера и правильно осуществить его подбор.

Как правильно сделать , на что в первую очередь надо полагаться чтобы, среди множества предложений, произвести качественный ?

На этой странице мы дадим несколько рекомендаций, прислушавшись к которым вы приблизитесь к тому, чтобы сделать правильный .

Расчет холодопроизводительности чиллера. Расчет мощности чиллера - его мощности охлаждения.

В первую очередь по формуле , в которой участвует объем охлаждаемой жидкости; изменение температуры жидкости, которое надо обеспечить охладителем; теплоемкость жидкости; ну и конечно время за которое этот объем жидкости надо охладить - определяется мощность охлаждения:

Формула охлаждения, т.е. формула вычисления необходимой холодопроизводительности:

Q = G*(Т1- Т2)*C рж *pж / 3600

Q – холодопроизводительность, кВт/час

G - объёмный расход охлаждаемой жидкости, м 3 /час

Т2 - конечная температура охлаждаемой жидкости, о С

Т1 - начальная температура охлаждаемой жидкости, о С

C рж -удельная теплоёмкость охлаждаемой жидкости, кДж / (кг* о С)

- плотность охлаждаемой жидкости, кг/м 3

* Для воды C рж *pж = 4,2

По данной формуле определяется необходимая мощность охлаждения и она является основной при выборе чиллера.

  • Формулы пересчета размерностей чтобы рассчитать холодопроизводительность водоохладителя :

1 кВт = 860 кКал/час

1 кКал/час = 4,19 кДж

1 кВт = 3,4121 кБТУ/час

Подбор чиллера

Для того, чтобы произвести подбор чиллера - очень важно выполнить правильное составление технического задания на расчет чиллера, в котором участвуют не только параметры самого водоохладителя, но и данные о его размещении и условии его совместной работы с потребителем. На основании выполненных вычислений можно - выбрать чиллер.

Не нужно забывать про то, в каком регионе Вы находитесь. Например, расчет для города Москва будет отличаться от расчета для города Мурманск так как максимальные температуры двух данных городов отличается.

П о таблицам параметров водоохлаждающих машин делаем первый выбор чиллера и знакомимся с его характеристиками. Далее, имея на руках основные характеристики выбранной машины, такие как: - холодопроизводительность чиллера , потребляемая им электрическая мощность, есть ли в его составе гидромодуль и его - подача и напор жидкости, объём проходящего через охладитель воздуха (который нагревается) в куб.метрах в секунду - Вы сможете проверить возможность установки охладителя воды на выделенной площадке. После того, как предполагаемый охладитель воды удовлетворит требованиям технического задания и вероятнее всего сможет работать на подготовленной для него площадке рекомендуем обратиться к специалистам, которые проверят Ваш выбор.

Выбор чиллера - особенности, которые надо предусмотреть при подборе чиллера.

Основные требования к месту будущей установки охладителя воды и схемы его работы с потребителем :

  • Если запланированное место в помещении, то - возможно ли в нем обеспечить большой обмен воздуха, возможно ли в это помещение внести охладитель воды, возможно ли в нем будет его обслуживать?
  • Если будущее размещение охладителя воды на улице - будет ли необходимость его работы в зимний период, возможно ли использование незамерзающих жидкостей, возможно ли обеспечить защиту охладителя воды от внешних воздействий (анти-вандальная, от листьев и веток деревьев, и т.д.) ?
  • Если температура жидкости, до которой её надо охлаждать ниже +6 о С или она выше + 15 о С - чаще всего такой диапазон температур не входит в таблицы быстрого выбора. В этом случае рекомендуем обратиться к нашим специалистам.
  • Следует определиться с расходом охлаждаемой воды и необходимым давлением, которое должен обеспечить гидромодуль охладителя воды - необходимое значение может отличаться от параметра выбранной машины.
  • Если температуру жидкости необходимо понизить более чем на 5 градусов, то схема прямого охлаждения жидкости водоохладителем не применяется и необходим расчет и комплектация дополнительным оборудованием.
  • Если охладитель будет использоваться круглосуточно и круглогодично, а конечная температура жидкости достаточно высока - на сколько целесообразно будет применение установки с ?
  • В случае применения незамерзающих жидкостей высоких концентраций требуется дополнительный расчет производительности испарителя водоохладителя.

Программа подбора чиллера

К сведению: даёт только приближённое понимание о необходимой модели охладителя и соответствия его техническому заданию. Далее необходима проверка расчетов специалистом. При этом Вы можете ориентироваться на полученную в результате расчетов стоимость +/- 30% (в случаях с низкотемпературными моделями охладителей жидкости - указанная цифра ещё больше) . Оптимальная модель и стоимость будут определены только после проверки расчетов и сопоставления характеристик разных моделей и производителей нашим специалистом.

Подбор чиллера ОнЛайн

Вы можете сделать обратившись к нашему онлайн консультанту, который быстро и технически обоснованно даст ответ на Ваш вопрос. Также консультант может выполнить исходя из кратко написанных параметров технического задания расчет чиллера онлайн и дать приблизительно подходящую по параметрам модель.

Расчеты, произведённые не специалистом часто приводят к тому, что выбранный водоохладитель не соответствует в полной мере ожидаемым результатам.

Компания Питер Холод специализируется на комплексных решениях по обеспечению промышленных предприятий оборудованием, которое полностью удовлетворяет требования технического задания на поставку системы водоохлаждения. Мы производим сбор информации для наполнения технического задания, расчет холодопроизводительности чиллера, определение оптимально подходящего охладителя воды, проверку с выдачей рекомендаций по его установке на выделенной площадке, расчет и комплектацию всех дополнительных элементов для работы машины в системе с потребителем (расчет бака аккумулятора, гидромодуля, дополнительных, при необходимости теплообменников, трубопроводов и запирающей и регулирующей арматуры).

Накопив многолетний опыт расчетов и последующих внедрений систем охлаждения воды на различные предприятия мы обладаем знаниями, по решению любых стандартных и далеко не стандартных задач связанных с многочисленными особенностями установки на предприятие охладителей жидкости, объединения их с технологическими линиями, настройке специфических параметров работы оборудования.

Самым оптимальный и точный и соответственно определение модели водоохладителя можно сделать очень быстро, позвонив или послав заявку инженеру нашей компании.

Дополнительные формулы для расчета чиллера и определения схемы его подключения к потребителю холодной воды (расчет мощности чиллера)

  • Формула расчёта температуры, при смешении 2-х жидкостей (формула смешения жидкостей):

Т смеш = (М1*С1*Т1+М2*С2*Т2) / (С1*M1+С2*М2)

Т смеш – температура смешанной жидкости, о С

М1 – масса 1-ой жидкости, кг

C1 - удельная теплоёмкость 1-ой жидкости, кДж/(кг* о С)

Т1 - температура 1-ой жидкости, о С

М2 – масса 2-ой жидкости, кг

C2 - удельная теплоёмкость 2-ой жидкости, кДж/(кг* о С)

Т2 - температура 2-ой жидкости, о С

Данная формула используется, если применяется аккумулирующая емкость в системе охлаждения, нагрузка непостоянна по времени и температуре (чаще всего при расчете необходимой мощности охлаждения автоклав и реакторов)

Мощность охлаждения чиллера.

Москва..... Воронеж..... Белгород..... Нижневартовск..... Новороссийск.....
Екатеринбург..... в Ростове-на-Дону..... Смоленск..... Киров..... Ханты-Мансийск.....
Ростов-на-Дону..... Пенза..... Владимир..... Астрахань..... Брянск.....
Казань..... Самара..... Набережные Челны..... Рязань..... Нижний Тагил.....
Краснодар..... Тольятти..... Чебоксары..... Волжский..... Нижегородская область.....
Нижний Новгород..... Ростов на Дону..... Саратов..... Сургут..... Краснодарский край.....
в Ростове на Дону..... Оренбург..... Калуга..... Ульяновск..... Томск.....
Волгоград..... Тверь..... Марий Эл..... Тюмень..... Омск.....
Уфа..... Сочи..... Ярославль..... Орел..... Новгородская область.....

1. Задание на курсовую работу

По исходным данным к курсовой работе необходимо:

Определить гидравлические потери контура циркуляции испарителя;

Определить полезный напор в контуре естественной циркуляции ступени испарителя;

Определить рабочую скорость циркуляции;

Определить коэффициент теплопередачи.

Исходные данные.

Тип испарителя - И -350

Количество труб Z = 1764

Параметры греющего пара: Р п = 0,49 МПа, t п = 168 0 С.

Расход пара D п = 13,5 т/ч;

Габаритные размеры:

L 1 = 2,29 м

L 2 = 2,36 м

Д 1 = 2,05 м

Д 2 = 2 ,85 м

Опускные трубы

Количество n оп = 22

Диаметр d оп = 66 мм

Температурный напор в ступени  t = 14 о С.

2. Назначение и устройство испарителей

Испарители предназначены для получения дистиллята, восполняющего потери пара и конденсата в основном цикле паротурбинных установок электростанций, а также выработки пара для общестанционных нужд и внешних потребителей.

Испарители могут использоваться в составе как одноступенчатых, так многоступенчатых испарительных установок для работы в технологическом комплексе тепловых электростанций.

В качестве греющей среды может использоваться пар среднего и низкого давления из отборов турбин или РОУ, а в некоторых моделях даже вода с температурой 150-180 °С.

В зависимости от назначения и требований по качеству вторичного пара испарители изготавливаются с одно- и двухступенчатами паропромывочными устройствами.

Испаритель представляет собой сосуд цилиндрической формы и, как правило, вертикального типа. Продольный разрез испарительной установки представлен на рисунке 1. Корпус испарителя состоит из цилиндрической обечайки и двух эллиптических днищ, приваренных к обечайке. Для крепления к фундаменту к корпусу приварены опоры. Для подъема и перемещения испарителя предусмотрены грузовые штуцеры (цапфы).

На корпусе испарителя предусмотрены патрубки и штуцеры для:

Подвода греющего пара (3);

Отвода вторичного пара;

Отвода конденсата греющего пара (8);

Подвода питательной воды испарителя (5);

Подвода воды на паропромывочное устройство (4);

Непрерывной продувки;

Слива воды из корпуса и периодической продувки;

Перепуска неконденсирующихся газов;

Установки предохранительных клапанов;

Установки приборов контроля и автоматического регулирования;

Отбора проб.

В корпусе испарителя предусмотрено два люка для осмотра и ремонта внутренних устройств.

Питательная вода поступает по коллектору (5) на промывочный лист (4) и по опускным трубам в нижнюю часть греющей секции (2). Греющий пар поступает по патрубку (3) в межтрубное пространство греющей секции. Омывая трубы греющей секции, пар конденсируется на стенках труб. Конденсат греющего пара стекает в нижнюю часть греющей секции, образуя необогреваемую зону.

Внутри труб, сначала вода, затем пароводяная смесь поднимается в парообразующий участок греющей секции. Пар поднимается верх, а вода переливается в кольцевое пространство и опускается вниз.

Образующийся вторичный пар, сначала проходит через промывочный лист, где остаются крупные капли воды, затем через жалюзийный сепаратор (6), где улавливаются средние и часть мелких капель. Движение воды в опускных трубах, кольцевом канале и пароводяной смеси трубах греющей секции происходит за счет естественной циркуляции: разности плотностей воды и пароводяной смеси.

Рис. 1. Испарительная установка

1 - корпус; 2 - греющая секция; 3 - подвод греющего пара; 4 - промывочный лист; 5 - подвод питательной воды; 6 - жалюзийный сепаратор; 7 -опускные трубы; 8 - отвод конденсата греющего пара.

3. Определение параметров вторичного пара испарительной установки

Рис.2. Схема испарительной установки.

Давление вторичного пара в испарителе определяется температурным напором ступени и параметрами потока в греющем контуре.

При Р п = 0,49 МПа, t п = 168 о С, h п = 2785 КДж/кг

Павраметры при давлении насыщения Р п = 0,49 МПа,

t н = 151 о С, h" п = 636,8 КДж/кг; h" п = 2747,6 КДж/кг;

Давление вторичного пара определяется по температуре насыщения.

T н1 = t н – ∆t = 151 – 14 = 137 о С

где ∆t = 14 о C.

При температуре насыщения t н1 = 137 о С давление вторичного пара

Р 1 = 0,33 МПа;

Энтальпии пара при Р 1 = 0,33 МПа h" 1 = 576,2 КДж/кг; h" 1 = 2730 КДж/кг;

4. Определение производительности испарительной установки.

Производительность испарительной установки определяется потоком вторичного пара из испарителя

D иу = D i

Количество вторичного пара из испарителя определяется из уравнения теплового баланса

D ni ∙(h ni -h΄ ni )∙η = D i ∙h i ˝+ α∙D i ∙h i ΄ - (1+α)∙D i ∙h пв ;

Отсюда расход вторичного пара из испарителя:

D = D n ∙(h n - h΄ n )η/((h˝ 1 + αh 1 ΄ - (1 + α)∙h пв )) =

13,5∙(2785 – 636,8)0,98/((2730+0,05∙576,2 -(1+0,05)∙293,3)) = 11,5 4 т/ч.

где энтальпии греющего пара и его конденсата

H n = 2785 КДж/кг, h΄ n = 636,8 КДж/кг;

Энтальпии вторичного пара, его конденсата и питательной воды:

H˝ 1 =2730 КДж/кг; h΄ 1 = 576,2 КДж/кг;

Энтальпии питательной воды при t пв = 70 о С: h пв = 293,3 КДж/кг;

Продувка α = 0,05; т.е. 5 %. КПД испарителя, η = 0,98.

Производительность испарителя:

D иу = D = 11,5 4 т/ч;

5. Тепловой расчёт испарителя

Расчёт производится методом последовательного приближения.

Тепловой поток

Q = (D /3,6)∙ =

= (11,5 4 /3,6)∙ = 78 56 ,4 кВт;

Коэффициент теплопередачи

k = Q/ΔtF = 7856,4/14∙350 = 1,61 кВт/м 2 ˚С = 1610 Вт/м 2 ˚С,

где Δt=14˚C ; F= 350 м 2 ;

Удельный тепловой поток

q =Q/F = 78 56 ,4/350 = 22, 4 кВт/м 2 ;

Число Рейнольдса

Rе = q∙H/r∙ρ"∙ν = 22, 4 ∙0,5725/(21 10 , 8 ∙9 1 5∙2,03∙10 -6 ) = 32 , 7 8;

Где высота теплообменной поверхности

H = L 1 /4 = 2,29 /4 = 0,5725 м;

Теплота парообразования r = 2110,8 кДж/кг;

Плотность жидкости ρ" = 915 кг/м 3 ;

Коэффициент кинематической вязкости при Р п = 0,49 МПа,

ν =2,03∙10 -6 м/с;

Коэффициент теплоотдачи от конденсирующегося пара к стенке

при Rе = 3 2 , 7 8 < 100

α 1н =1,01∙λ∙(g/ν 2 ) 1/3 Rе -1/3 =

1,01∙0,684∙(9,81/((0,2 0 3∙10 -6 ) 2 )) 1/3 ∙3 2 , 7 8 -1/3 = 133 78 ,1 Вт/м 2 ˚С;

где при Р п = 0,49 МПа, λ = 0,684 Вт/м∙˚С;

Коэффициент теплоотдачи с учётом окисления стенок труб

α 1 =0,75∙α 1н =0,75∙133 78 ,1 = 10 0 3 3 , 6 Вт/м 2 ˚С;

6. Определение скорости циркуляции.

Расчёт проводится графо-аналитическим методом.

Задаваясь тремя значениями скорости циркуляции W 0 = 0,5; 0,7; 0,9 м/с рассчитываем сопротивление в подводящих линиях ∆Р подв и полезный напор ∆Р пол . По данным расчета строим график ΔР подв .=f(W) и ΔР пол .=f(W). При этих скоростях зависимости сопротивления в подводящих линиях ∆Р подв и полезный напор ∆Р пол не пересекаются. Поэтому заново задаемся тремя значениями скорости циркуляции W 0 = 0,8; 1,0; 1,2 м/с; рассчитываем сопротивление в подводящих линиях и полезный напор заново. Точка пересечения этих кривых соответствует рабочему значению скорости циркуляции. Гидравлические потери в подводящей части складываются из потерь в кольцевом пространстве и потерь на входных участках труб.

Площадь кольцевого сечения

F к =0,785∙[(Д 2 2 -Д 1 2 )-d 2 оп ∙n оп ]=0,785[(2,85 2 – 2,05 2 ) – 0,066 2 ∙22] = 3,002 м 2 ;

Эквивалентный диаметр

Д экв =4∙F к /(Д 1 +Д 2 +n∙d оп ) π =4*3,002/(2,05+2,85+ 22∙0,066)3,14= 0,602 м;

Скорость воды в кольцевом канале

W к =W 0 ∙(0,785∙d 2 вн ∙Z/F к ) =0,5∙(0,785∙0,027 2 ∙1764 /3,002) = 0,2598 м/с;

где внутренний диаметр труб греющей секции

D вн =d н – 2∙δ = 32 - 2∙2,5 = 27 мм = 0,027 м;

Число труб греющей секции Z = 1764 шт.

Расчёт ведём в табличной форме, таблица 1

Расчёт скорости циркуляции. Таблица 1.

п/п

Наименование, формула определения, единица измерения.

Скорость, W 0 , м/с

Скорость воды в кольцевом канале:

W к =W 0 *((0,785*d вн 2 z)/F к ), м/с

0,2598

0,3638

0,4677

Число Рейнольса:

Rе =W к ∙Д экв / ν

770578,44

1078809,8

1387041,2

Коэффициент трения в кольцевом канале λ тр =0,3164/Rе 0,25

0,0106790

0,0098174

0,0092196

Потери давления при движении в кольцевом канале, Па: ΔР к =λ тр *(L 2 /Д экв )*(ρ΄W к 2 /2) ;

1,29

2,33

3,62

Потери давления на входе из кольцевого канала, Па; ΔР вх =(ξ вх +ξ вых )*((ρ"∙W к 2 )/2),

Где ξ вх =0,5;ξ вых =1,0.

46,32

90,80

150,09

Потери давления на входе в трубы греющей секции, Па; ΔР вх.тр .=ξ вх.тр .*(ρ"∙W к 2 )/2,

Где ξ вх.тр .=0,5

15,44

30,27

50,03

Потери давления при движении воды на прямом участке, Па; ΔР тр =λ гр *(ℓ но /d вн )*(ρ΄W к 2 /2), где ℓ но -высота нижнего не обогреваемого участка , м. ℓ но = ℓ +(L 2 -L 1 )/2=0,25 +(3,65-3,59)/2=0,28 м, =0,25-уровень конденсата

3,48

6,27

9,74

Потери в опускных трубах, Па;

ΔР оп = ΔР вх +ΔР к

47,62

93,13

153,71

Потери в не обогреваемом участке, Па; ΔР но =ΔР вх.тр .+ΔР тр .

18,92

36,54

59,77

Тепловой поток, кВт/м 2 ;

G вн =kΔt= 1,08∙10= 10,8

22,4

22,4

22,4

Общее количество теплоты подаваемое в кольцевом пространстве, КВт; Q к =πД 1 L 1 kΔt=3,14∙2,5∙3,59∙2,75∙10= 691,8

330,88

330,88

330,88

Повышение энтальпии воды в кольцевом канале, КДж/кг; Δh к =Q к /(0,785∙d вн 2 Z∙W∙ρ")

0,8922

0,6373

0,4957

Высота экономайзерного участка,м; ℓ эк =((-Δh к - -(ΔР оп +ΔР но )∙(dh/dр)+gρ"∙(L 1 - ℓ но )∙(dh/dр))/

((4g вн /ρ"∙W∙d вн )+g∙ρ"∙(dh/dр)), где (dh/dр)=

=Δh/Δр=1500/(0,412*10 5 )=0,36

1,454

2,029

2,596

Потери на экономайзерном участке, Па; ΔР эк =λ∙ ℓ эк ∙(ρ"∙W 2 )/2

1,7758

4,4640

8,8683

15 15

Общее сопротивление в подводящих линиях, Па; ΔР подв =ΔР оп +ΔР но +ΔР эк

68,32

134,13

222,35

Количество пара в одной трубе, кг/с

Д" 1 =Q/z∙r

0,00137

0,00137

0,00137

Приведённая скорость на выходе из труб, м/с, W" ок =Д" 1 /(0,785∙ρ"∙d вн 2 ) =

0,0043/(0,785∙1,0∙0,033 2 ) =1,677 м/с;

0,83

0,83

0,83

Средняя приведённая скорость,

W˝ пр =W˝ ок /2= =1,677/2=0,838 м/с

0,42

0,42

0,42

Расходное паросодержание, β ок =W˝ пр /(W˝ пр +W)

0,454

0,373

0,316

Скорость всплытия одиночного пузыря в неподвижной жидкости, м/с

W пуз =1,5 4 √gG(ρ΄-ρ˝/(ρ΄)) 2

0,2375

0,2375

0,2375

Фактор взаимодействия

Ψ вз =1,4(ρ΄/ρ˝) 0,2 (1-(ρ˝/ρ΄)) 5

4,366

4,366

4,366

Групповая скорость всплытия пузырей, м/с

W* =W пуз Ψ вз

1,037

1,037

1,037

Скорость смешивания, м/с

W см.р =W пр "+W

0,92

1,12

1,32

Объёмное паросодержание φ ок =β ок /(1+W*/W см.р )

0,213

0,193

0,177

Движущий напор, Па ΔР дв =g(ρ-ρ˝)φ ок L пар, где L пар =L 1 -ℓ но -ℓ эк =3,59-0,28-ℓ эк ;

1049,8

40,7

934,5

Потери на трение в пароводяной линии ΔР тр.пар =

=λ тр ((L пар /d вн )(ρ΄W 2 /2))

20,45

1,57

61,27

Потери на выходе из трубы ΔР вых =ξ вых (ρ΄W 2 /2)[(1+(W пр ˝/W)(1-(ρ˝/ρ΄)]

342,38

543,37

780,96

Потери на ускорение потока

ΔР уск =(ρ΄W) 2 (y 2 -y 1 ) , где

y 1 =1/ρ΄=1/941,2=0,00106 при x=0; φ=0 у 2 =((x 2 к /(ρ˝φ к ))+((1-x к ) 2 /(ρ΄(1-φ к )

23 , 8 51

0,00106

0,001 51

38 , 36

0,00106

0,001 44

5 4,0 6

0,00106

0,001 39

W см =W˝ ок +W

β к =W˝ ок /(1+(W˝ок/W см ))

φ к =β к /(1+(W˝ ок /W см ))

х к =(ρ˝W˝ ок )/(ρ΄W)

1 , 33

0, 62

0, 28 0

0,000 6 8

1 , 53

0, 54

0, 242

0,0005 92

1 , 7 3

0,4 8

0,2 13

0,000 523

Полезный напор, Па; ΔР пол =ΔР дв -ΔР тр -ΔР вых -ΔР уск

663 ,4

620 , 8

1708 , 2

Строится зависимость:

ΔР подв .=f(W) и ΔР пол .=f(W) , рис. 3 и находим W р = 0,58 м/с;

Число Рейнольдса:

Rе = (W р d вн )/ν = (0 , 5 8∙0,027)/(0, 20 3∙10 -6 ) = 7 7 1 4 2 , 9 ;

Число Нуссельта:

N и = 0,023∙Rе 0,8 ∙Рr 0,37 = 0,023∙77142,9 0,8 ∙1,17 0,37 = 2 3 02 , 1 ;

где число Рr = 1,17;

Коэффициент теплоотдачи от стенки к кипящей воде

α 2 = Nuλ/d вн = (2302,1∙0,684)/0,027 = 239257,2 Вт/м 2 ∙˚С

Коэффициент теплоотдачи от стенки к кипящей воде с учётом оксидной плёнки

α΄ 2 =1/(1/α 2 )+0,000065=1/(1/ 239257.2 )+0,000065= 1 983 Вт/м 2 ∙˚С;

Коэффициент теплопередачи

K=1/(1/α 1 )+(d вн /2λ ст )*ℓn*(d н /d вн )+(1/α΄ 2 )*(d вн /d н ) =

1/(1/ 1983 )+(0,027/2∙60)∙ℓn(0,032/0,027)+(1/1320)∙(0,027/0,032)=

17 41 Вт/м 2 ∙˚С;

где для Ст.20 имеем λ ст = 60 Вт/м∙ о С.

Отклонение от ранее принятого значения

δ = (k-k 0 )/k 0 ∙100%=[(1 741 – 1 603 )/1 741 ]*100 % = 7 , 9 % < 10%;

Литература

1. Рыжкин В.Я. Тепловые электрические станции. М. 1987.

2. Кутепов А.М. и др. Гидродинамика и теплообмен при парообразовании. М. 1987.

3. Огай В.Д. реализация технологического процесса на ТЭС. Методические указания к выполнению курсовой работы. Алматы. 2008.

Изм

Лист

Докум

Подп

Дата

КР-5В071700 ПЗ

Лист

Выполнил

Полетаев П.

Руководитель

Площадь теплоотдающей поверхности испарителя F, м 2 , определяется по формуле:

где - тепловой поток в испарителе, Вт

к – коэффициент теплопередачи испарителя, Вт/(м 2 *К), зависит от типа испарителя;

Средняя логарифмическая разность между температурами кипящего фреона и охлаждаемой среды;

–удельный тепловой поток, равный 4700 Вт/м 2

Расход холодоносителя, необходимый для отвода теплопритоков, определяется по формуле:

где с - теплоемкость охлаждаемой среды: для воды 4,187 кДж/(кг*°С), для рассола теплоемкость принимается по специальным таблицам в зависимости от температуры его замерзания, которая принимается на 5-8°С ниже температуры кипения хладагента t 0 для открытых систем и на 8-10°С ниже t 0 для закрытых систем;

ρ р - плотность, холодоносителя СКВ, кг/м 3 ;

Δ t р - разность температуры холодоносителя на входе в испаритель и на выходе из него, °С.

Для условий кондиционирования воздуха при наличии форсуночных камер орошения применяются схемы распределения потоков воды. Согласно этому, Δt р определится как разность температур на выходе из поддона камеры орошения t w.к и на выходе из испарителя t Х :.

8. Подбор конденсатора

Расчет конденсатора сводится к определению площади теплопередающей поверхности, по которой подбирают один или несколько конденсаторов с суммарной площадью поверхности, равной расчетной (запас по поверхности не более+15%).

1. Теоретический тепловой поток в конденсаторе определяется по разности удельных энтальпий в теоретическом цикле с учетом или без учета переохлаждения в конденсаторе:

а) тепловой поток с учетом переохлаждения в конденсаторе определяется по разности удельных энтальпий в теоретическом цикле:

б) тепловой поток без учета переохлаждения в конденсаторе и при отсутствии регенеративного теплообменника

Полная тепловая нагрузка с учетом теплового эквивалента мощности, затрачиваемой компрессором на сжатие хладагента (действительный тепловой поток):

2. Определяется средняя логарифмическая разность температур θ ср между конденсирующимся хладагентом и охлаждающей конденсатор средой, °С:

где - разность температуры в начале теплопередающей поверхности (большая разность температур), 0 С:

Разность температуры в конце теплопередающей поверхности (меньшая разность температур), 0 С:

3. Находим удельный тепловой поток:

где к – коэффициент теплопередачи, равен 700 Вт/(м 2 *К)

4. Площадь теплопередающей поверхности конденсатора:

5. Расход охлаждающей конденсатор среды:

где - суммарный тепловой поток в конденсаторе от всех групп компрессоров, кВт;

с - удельная теплоемкость охлаждающей конденсатор среды (вода, воздух), кДж/(кг*К);

ρ - плотность охлаждающей конденсатор среды, кг/м 3 ;

- подогрев охлаждающей конденсатор среды, °С:

1,1 - коэффициент запаса (10%), учитывающий непроизводительные потери.

По расходу воды с учетом необходимого напора подбирают насос оборотного водоснабжения необходимой производительности. Обязательно предусматривают резервный насос.

9. Подбор основных холодильных агрегатов

Подбор холодильной машины производят одним из трех методов:

По описанному объему компрессора, входящего в состав машины;

По графикам холодопроизводительности машины;

По табличным значениям холодопроизводительности машины, приводимым в технической характеристике изделия.

Первый метод аналогичен тому, которым пользуются для расчета одноступенчатого компрессора: определяют требуемый объем, описанный поршнями компрессора, а затем по таблицам технических характеристик подбирают машину или несколько машин таким образом, чтобы фактическое значение объема, описанного поршнями, было на 20-30% больше полученного расчетом.

При подборе холодильной машины третьим методом необходимо холодопроизводительность машины, рассчитанную для рабочих условий, привести к условиям, при которых она дана в таблице характеристик, то есть к стандартным условиям.

После выбора марки агрегата (по холодопроизводительности, приведенной к стандартным условиям) необходимо проверить, достаточна ли площадь теплопередающей поверхности испарителя и конденсатора. Если указанная в технической характеристике площадь теплопередающей поверхности аппаратов равна расчетной или несколько больше ее, машина подобрана правильно. Если же, например, площадь поверхности испарителя оказалась меньше расчетной, необходимо задаться новым значением температурного напора (более низкой температурой кипения), после чего проверить, достаточна ли производительность компрессора при новом значении температуры кипения.

Принимаем чиллер с водяным охлаждением марки York YCWM с холодопроизводительностью 75 кВт.

Расчет теплообменника в настоящее время занимает не более пяти минут. Любая организация, производящая и продающая такое оборудование, как правило, предоставляет всем желающим свою собственную программу подбора. Ее можно бесплатно скачать с сайта компании, либо их технический специалист приедет к вам в офис и бесплатно её установит. Однако насколько корректен результат таких расчетов, можно ли ему доверять и не лукавит ли производитель, сражаясь в тендере со своими конкурентами? Проверка электронного калькулятора требует наличия знаний или как минимум понимания методики расчета современных теплообменников. Попробуем разобраться в деталях.

Что такое теплообменник

Прежде чем выполнять расчет теплообменника, давайте вспомним, а что же это за устройство такое? Тепломассообменный аппарат (он же теплообменник, он же или ТОА) - это устройство для передачи теплоты от одного теплоносителя другому. В процессе изменения температур теплоносителей меняются также их плотности и, соответственно, массовые показатели веществ. Именно поэтому такие процессы называют тепломассообменными.

Виды теплообмена

Теперь поговорим о - их всего три. Радиационный - передача теплоты за счет излучения. Как пример, можно вспомнить принятие солнечных ванн на пляже в теплый летний день. И такие теплообменники даже можно встретить на рынке (ламповые нагреватели воздуха). Однако чаще всего для обогрева жилых помещений, комнат в квартире мы покупаем масляные или электрические радиаторы. Это пример другого типа теплообмена - бывает естественной, вынужденной (вытяжка, а в коробе стоит рекуператор) или с механическим побуждением (с вентилятором, например). Последний тип намного эффективнее.

Однако самый эффективный способ передачи теплоты - это теплопроводность, или, как её ещё называют, кондукция (от англ. conduction - "проводимость"). Любой инженер, собирающийся провести тепловой расчет теплообменника, прежде всего задумывается о том, чтобы выбрать эффективное оборудование в минимальных габаритах. И достичь этого удаётся именно за счет теплопроводности. Примером тому служат самые эффективные на сегодняшний день ТОА - пластинчатые теплообменники. Пластинчатый ТОА, согласно определению, - это теплообменный аппарат, передающий теплоту от одного теплоносителя другому через разделяющую их стенку. Максимально возможная площадь контакта между двумя средами в совокупности с верно подобранными материалами, профилем пластин и их толщиной позволяет минимизировать размеры выбираемого оборудования при сохранении исходных технических характеристик, необходимых в технологическом процессе.

Типы теплообменников

Прежде чем проводить расчет теплообменника, определяются с его типом. Все ТОА можно разделить на две большие группы: рекуперативные и регенеративные теплообменники. Основное отличие между ними заключается в следующем: в рекуперативных ТОА теплообмен происходит через разделяющую два теплоносителя стенку, а в регенеративных две среды имеют непосредственный контакт между собой, часто смешиваясь и требуя последующего разделения в специальных сепараторах. подразделяются на смесительные и на теплообменники с насадкой (стационарной, падающей или промежуточной). Грубо говоря, ведро с горячей водой, выставленное на мороз, или стакан с горячим чаем, поставленный остужаться в холодильник (никогда так не делайте!) - это и есть пример такого смесительного ТОА. А наливая чай в блюдце и остужая его таким образом, мы получаем пример регенеративного теплообменника с насадкой (блюдце в этом примере играет роль насадки), которая сначала контактирует с окружающим воздухом и принимает его температуру, а потом отбирает часть теплоты от налитого в него горячего чая, стремясь привести обе среды в режим теплового равновесия. Однако, как мы уже выяснили ранее, эффективнее использовать теплопроводность для передачи теплоты от одной среды к другой, поэтому более полезные в плане теплопередачи (и широко используемые) ТОА на сегодняшний день - конечно же, рекуперативные.

Тепловой и конструктивный расчет

Любой расчет рекуперативного теплообменника можно провести на основе результатов теплового, гидравлического и прочностного вычислений. Они являются основополагающими, обязательны при проектировании нового оборудования и ложатся в основу методики расчета последующих моделей линейки однотипных аппаратов. Главной задачей теплового расчета ТОА является определение необходимой площади теплообменной поверхности для устойчивой работы теплообменника и поддержания необходимых параметров сред на выходе. Довольно часто при таких расчетах инженеры задаются произвольными значениями массогабаритных характеристик будущего оборудования (материал, диаметр труб, размеры пластин, геометрия пучка, тип и материал оребрения и др.), поэтому после теплового обычно проводят конструктивный расчет теплообменника. Ведь если на первой стадии инженер посчитал необходимую площадь поверхности при заданном диаметре трубы, например, 60 мм, и длина теплообменника при этом получилась порядка шестидесяти метров, то логичнее предположить переход к многоходовому теплообменнику, либо к кожухотрубному типу, либо увеличить диаметр трубок.

Гидравлический расчет

Гидравлические или гидромеханические, а также аэродинамические расчеты проводят с целью определить и оптимизировать гидравлические (аэродинамические) потери давления в теплообменнике, а также подсчитать энергетические затраты на их преодоление. Расчет любого тракта, канала или трубы для прохода теплоносителя ставит перед человеком первостепенную задачу - интенсифицировать процесс теплообмена на данном участке. То есть одна среда должна передать, а другая получить как можно больше тепла на минимальном промежутке его течения. Для этого часто применяют дополнительную поверхность теплообмена, в виде развитого оребрения поверхности (для отрыва пограничного ламинарного подслоя и усиления турбулизации потока). Оптимальное балансовое соотношение гидравлических потерь, площади теплообменной поверхности, массогабаритных характеристик и снимаемой тепловой мощности является результатом совокупности теплового, гидравлического и конструктивного расчета ТОА.

Исследовательские расчеты

Исследовательские расчеты ТОА проводят на основе полученных результатов теплового и поверочного расчетов. Они необходимы, как правило, для внесения последних поправок в конструкцию проектируемого аппарата. Их также проводят с целью корректировки каких-либо уравнений, закладываемых в реализуемой расчетной модели ТОА, полученной эмпирическим путём (по экспериментальным данным). Выполнение исследовательских расчетов предполагает проведение десятков, а иногда и сотен вычислений по специальному плану, разработанному и внедрённому на производстве согласно математической теории планирования экспериментов. По результатам выявляют влияние различных условий и физических величин на показатели эффективности ТОА.

Другие расчеты

Выполняя расчет площади теплообменника, не стоит забывать и о сопротивлении материалов. Прочностные расчеты ТОА включают проверку проектируемого агрегата на напряжение, на кручение, на прикладывание максимально допустимых рабочих моментов к деталям и узлам будущего теплообменника. При минимальных габаритах изделие должно быть прочным, устойчивым и гарантировать безопасную работу в различных, даже самых напряженных условиях эксплуатации.

Динамический расчет проводится с целью определения различных характеристик теплообменного аппарата на переменных режимах его работы.

Типы конструкции теплообменников

Рекуперативные ТОА по конструкции можно разделить на достаточно большое количество групп. Самые известные и широко применяемые - это пластинчатые теплообменники, воздушные (трубчатые оребрённые), кожухотрубные, теплообменники "труба в трубе", кожухо-пластинчатые и другие. Существуют и более экзотические и узкоспециализированные типы, например, спиральные (теплообменник-улитка) или скребковые, которые работают с вязкими или а также многие другие типы.

Теплообменники «труба в трубе»

Рассмотрим самый простой расчет теплообменника «труба в трубе». Конструктивно данный тип ТОА максимально упрощен. Во внутреннюю трубу аппарата пускают, как правило, горячий теплоноситель, для минимизации потерь, а в кожух, или в наружную трубу, запускают охлаждающий теплоноситель. Задача инженера в этом случае сводится к определению длины такого теплообменника исходя из рассчитанной площади теплообменной поверхности и заданных диаметров.

Здесь стоит добавить, что в термодинамике вводится понятие идеального теплообменника, то есть аппарата бесконечной длины, где теплоносители работают в противотоке, и между ними полностью срабатывается температурный напор. Конструкция «труба в трубе» ближе всего удовлетворяет этим требованиям. И если запустить теплоносители в противотоке, то это будет так называемый «реальный противоток» (а не перекрёстный, как в пластинчатых ТОА). Температурный напор максимально эффективно срабатывается при такой организации движения. Однако выполняя расчет теплообменника «труба в трубе», следует быть реалистами и не забывать о логистической составляющей, а также об удобстве монтажа. Длина еврофуры - 13,5 метров, да и не все технические помещения приспособлены к заносу и монтажу оборудования такой длины.

Кожухотрубные теплообменники

Поэтому очень часто расчет такого аппарата плавно перетекает в расчет кожухотрубного теплообменника. Это аппарат, в котором пучок труб находится в едином корпусе (кожухе), омываемым различными теплоносителями, в зависимости от назначения оборудования. В конденсаторах, например, хладагент запускают в кожух, а воду - в трубки. При таком способе движения сред удобнее и эффективнее контролировать работу аппарата. В испарителях, наоборот, хладагент кипит в трубках, а они при этом омываются охлаждаемой жидкостью (водой, рассолами, гликолями и др.). Поэтому расчет кожухотрубного теплообменника сводится к минимизации габаритов оборудования. Играя при этом диаметром кожуха, диаметром и количеством внутренних труб и длиной аппарата, инженер выходит на расчетное значение площади теплообменной поверхности.

Воздушные теплообменники

Один из самых распространённых на сегодняшний день теплообменных аппаратов - это трубчатые оребрённые теплообменники. Их ещё называют змеевиками. Где их только не устанавливают, начиная от фанкойлов (от англ. fan + coil, т.е. "вентилятор" + "змеевик") во внутренних блоках сплит-систем и заканчивая гигантскими рекуператорами дымовых газов (отбор теплоты от горячего дымового газа и передача его на нужды отопления) в котельных установках на ТЭЦ. Вот почему расчет змеевикового теплообменника зависит от того применения, куда этот теплообменник пойдёт в эксплуатацию. Промышленные воздухоохладители (ВОПы), устанавливаемые в камерах шоковой заморозки мяса, в морозильных камерах низких температур и на других объектах пищевого холодоснабжения, требуют определённых конструктивных особенностей в своём исполнении. Расстояния между ламелями (оребрением) должно быть максимальным, для увеличения времени непрерывной работы между циклами оттайки. Испарители для ЦОДов (центров обработки данных), наоборот, делают как можно более компактными, зажимая межламельные расстояния до минимума. Такие теплообменники работают в «чистых зонах», окруженные фильтрами тонкой очистки (вплоть до класса HEPA), поэтому такой расчет проводят с упором на минимизацию габаритов.

Пластинчатые теплообменники

В настоящее время стабильным спросом пользуются пластинчатые теплообменники. По своему конструктивному исполнению они бывают полностью разборными и полусварными, меднопаяными и никельпаяными, сварными и спаянными диффузионным методом (без припоя). Тепловой расчет пластинчатого теплообменника достаточно гибок и не представляет особой сложности для инженера. В процессе подбора можно играть типом пластин, глубиной штамповки каналов, типом оребрения, толщиной стали, разными материалами, а самое главное - многочисленными типоразмерными моделями аппаратов разных габаритов. Такие теплообменники бывают низкими и широкими (для парового нагрева воды) или высокими и узкими (разделительные теплообменники для систем кондиционирования). Их часто используют и под среды с фазовым переходом, то есть в качестве конденсаторов, испарителей, пароохладителей, предконденсаторов и т. д. Выполнить тепловой расчет теплообменника, работающего по двухфазной схеме, немного сложнее, чем теплообменника типа «жидкость-жидкость», однако для опытного инженера эта задача разрешима и не представляет особой сложности. Для облегчения таких расчетов современные проектировщики используют инженерные компьютерные базы, где можно найти много нужной информации, в том числе диаграммы состояния любого хладагента в любой развёртке, например, программу CoolPack.

Пример расчета теплообменника

Основной целью проведения расчета является вычисление необходимой площади теплообменной поверхности. Тепловая (холодильная) мощность обычно задается в техзадании, однако в нашем примере мы рассчитаем и её, для, скажем так, проверки самого техзадания. Иногда бывает и так, что в исходные данные может закрасться ошибка. Одна из задач грамотного инженера - эту ошибку найти и исправить. В качестве примера выполним расчет пластинчатого теплообменника типа «жидкость - жидкость». Пусть это будет разделитель контуров (pressure breaker) в высотном здании. Для того чтобы разгрузить оборудование по давлению, при строительстве небоскрёбов очень часто применяется такой подход. С одной стороны теплообменника имеем воду с температурой входа Твх1 = 14 ᵒС и выхода Твых1 = 9 ᵒС, и с расходом G1 = 14 500 кг/ч, а с другой - тоже воду, но только вот с такими параметрами: Твх2 = 8 ᵒС, Твых2 = 12 ᵒС, G2 = 18 125 кг/ч.

Необходимую мощность (Q0) рассчитаем по формуле теплового баланса (см. рис. выше, формула 7.1), где Ср - удельная теплоёмкость (табличное значение). Для простоты расчетов возьмём приведённое значение теплоёмкости Срв = 4,187 [кДж/кг*ᵒС]. Считаем:

Q1 = 14 500 * (14 - 9) * 4,187 = 303557,5 [кДж/ч] = 84321,53 Вт = 84,3 кВт - по первой стороне и

Q2 = 18 125 * (12 - 8) * 4,187 = 303557,5 [кДж/ч] = 84321,53 Вт = 84,3 кВт - по второй стороне.

Обратите внимание, что, согласно формуле (7.1), Q0 = Q1 = Q2, независимо от того, по какой стороне проведён расчет.

Далее по основному уравнению теплопередачи (7.2) находим необходимую площадь поверхности (7.2.1), где k - коэффициент теплопередачи (принимаем равным 6350 [Вт/м 2 ]), а ΔТср.лог. - среднелогарифмический температурный напор, считаемый по формуле (7.3):

ΔТ ср.лог. = (2 - 1) / ln (2 / 1) = 1 / ln2 = 1 / 0,6931 = 1,4428;

F то = 84321 / 6350 * 1,4428 = 9,2 м 2 .

В случае когда коэффициент теплопередачи неизвестен, расчет пластинчатого теплообменника немного усложняется. По формуле (7.4) считаем критерий Рейнольдса, где ρ - плотность, [кг/м 3 ], η - динамическая вязкость, [Н*с/м 2 ], v - скорость среды в канале, [м/с], d см - смачиваемый диаметр канала [м].

По таблице ищем необходимое нам значение критерия Прандтля и по формуле (7.5) получаем критерий Нуссельта, где n = 0,4 - в условиях нагрева жидкости, и n = 0,3 - в условиях охлаждения жидкости.

Далее по формуле (7.6) вычисляется коэффициент теплоотдачи от каждого теплоносителя к стенке, а по формуле (7.7) считаем коэффициент теплопередачи, который и подставляем в формулу (7.2.1) для вычисления площади теплообменной поверхности.

В указанных формулах λ - коэффициент теплопроводности, ϭ - толщина стенки канала, α1 и α2 - коэффициенты теплоотдачи от каждого из теплоносителей стенке.

Методика подбора водоохлаждающих установок - чиллеров

Определить требуемую холодопроизводительность можно в соответствии с исходными данными по формулам (1) или (2) .

Исходные данные:

  • объемный расход охлаждаемой жидкости G (м3/час) ;
  • требуемая (конечная) температура охлажденной жидкости Тk (°С) ;
  • температура входящей жидкости Тн (°С) .
Формула расчета требуемой холодопроизводительности установки для :
  • (1) Q (кВт) = G x (Тн – Тk) x 1,163
Формула расчета требуемой холодопроизводительности установки для любой жидкости:
  • (2) Q (кВт) = G x (Тнж– Тkж) x Cpж x ρж / 3600
Cpж – охлаждаемой жидкости, кДж/(кг*°С),

ρж – плотность охлаждаемой жидкости, кг/м3.

Пример 1

Требуется холодопроизводительностью Qo=16 кВт. Температура воды на выходе Тк=5°С. Расход воды равен G=2000 л/ч. Температура окружающей среды 30°С.

Решение

1. Определяем недостающие данные.

Перепад температур охлаждаемой жидкости ΔТж=Тнж-Ткж=Qo х 3600/G х Срж x ρж = 16 x 3600/2 x 4,19 x 1000=6,8°С, где

2. Выбираем схему . Перепад температур ΔТж=6,8~7°С, выбираем . Если дельта температур больше 7 градусов, то используем .

3. Температура жидкости на выходе из Тк=5°С.

4. Выбираем водоохлаждающую установку, которая подходит по требуемой холодопроизводительности при температуре воды на выходе из установки 5°С и температуре окружающего воздуха 30°С.

После просмотра определяем, что водоохлаждающая установка ВМТ-20 удовлетворяет этим условиям. Холодопроизводительность 16.3 кВт, потребляемая мощность 7,7 кВт.

Пример 2

Имеется бак объемом V=5000 л, в который заливают воду с температурой Тнж =25°С. В течение 3 часов требуется охладить воду до температуры Ткж=8°С. Расчетная температура окружающего воздуха 30°С.

1. Определяем потребную холодопроизводительность.

  • перепад температур охлаждаемой жидкости ΔТж=Тн - Тк=25-8=17°С;
  • расход воды G=5/3=1,66 м3/ч
  • холодопроизводительность Qо=G х Ср х ρж х ΔТж/3600=1,66 х 4,19 х 1000 х 17/3600=32,84 кВт.
где Срж =4,19 кДж/(кг х°С) - удельная теплоемкость воды;
ρж =1000 кг/м3 - плотность воды.

2. Выбираем схему водоохлаждающей установки. Однонасосная схема без использования промежуточной емкости.
Перепад температур ΔТж =17>7°С, определяем кратность циркуляции охлаждаемой жидкости n =Срж х ΔTж/Ср х ΔТ=4,2х17/4,2x5=3,4
где ΔТ=5°С - температурный перепад в испарителе.

Тогда расчетный расход охлаждаемой жидкости G = G х n= 1,66 x 3,4=5,64 м3/ч.

3. Температура жидкости на выходе из испарителя Тк=8°С.

4. Выбираем водоохлаждающую установку, которая подходит по требуемой холодопроизводительноСти при температуре воды на выходе из установки 8°С и температуре окружающего воздуха 28°С После просмотра таблиц определяем, что холодопроизводительность установки ВМТ-36 при Токр.ср.=30°С холодопроизводительность 33,3 кВт, мощность 12,2 кВт.

Пример 3 . Для экструдеров, термопластавтомата (ТПА).

Требуется охлаждение оборудования (экструдер 2 шт., миксер горячего смешения 1 шт., ТПА 2 шт.) системой оборотного водоснабжения. В качестве применятся вода с температурой +12°С.

Экструдер в количестве 2шт . Расход ПВХ на одном составляет 100кг/час. Охлаждение ПВХ с +190°С до +40°С

Q (кВт) = (М (кг/час) х Сp (ккал/кг*°С) х ΔT х 1,163)/1000;

Q (кВт) = (200(кг/час) х 0.55 (ккал/кг*°С) х 150 х 1,163)/1000=19.2 кВт.

Миксер горячего смешения в количестве 1 шт. Расход ПВХ 780кг/час. Охлаждение с +120°С до +40°С:

Q (кВт) = (780(кг/час) х 0.55 (ккал/кг*°С) х 80 х 1,163)/1000=39.9 кВт.

ТПА (термопластавтомат) в количестве 2шт. Расход ПВХ на одном составляет 2,5 кг/час. Охлаждение ПВХ с +190°С до +40°С:

Q (кВт) = (5(кг/час) х 0.55 (ккал/кг*°С) х 150 х 1,163)/1000=0.5 кВт.

Итого получаем суммарную холодопроизводительность 59,6 кВт .

Пример 4. Методики расчета хладопроизводительности.

1. Теплоотдача материала

P = количество перерабатываемой продукции кг/час

K = ккал/кг ч (теплоемкость материала)

Пластики :

Металлы:

2. Учет горячего канала

Pr = мощность горячего канала в Квт

860 ккал/час = 1 КВт

K = поправочный коэфициент (обычно 0.3):

K = 0.3 для изолированного ГК

K = 0.5 для не изолированного ГК

3. Охлаждение масла для литьевой машины

Pm = мощность двигателя масляного насоса кВт

860 ккал/ч = 1 кВт

K = скоростной (обычно 0.5):

k = 0.4 для медленного цикла

k = 0.5 для среднего цикла

k = 0.6 для быстрого цикла

КОРРЕКЦИЯ МОЩНОСТИ ЧИЛЛЕРА (ОРИЕНТИРОВОЧНАЯ ТАБЛИЦА)

ТЕМПЕРАТУРА ОКРУЖАЮЩЕЙ СРЕДЫ (°C)

Приблизительный расчет мощности при отсутствии других параметров для тпа.

Усилие смыкания

Производительность (кг/час)

На масло (ккал/час)

На формы (ккал/час)

Всего (ккал/час)

Корректировочный коэфициент:

Например:

ТПА с усилием смыкания 300 тонн и с циклом 15 секунд (средний)

Приблизительная хладопроизводительность:

Масло: Q масла = 20,000 x 0.7 = 14,000 ккал/час = 16.3 КВт

Форма: Q формы = 12,000 x 0.5 = 6,000 ккал/час = 7 КВт

По материалам компании Илма Технолоджи

Материалы для литья пластмассы
Обозначение Название Плот-ность (23°С), г/см3 Технологические характеристики
Темп. экспл., °С Атмо-сферо-стойкость (УФ-излучение) Температура, °С
Между-народное Русское Min Мax Формы Пере-работки
ABS АБС Акрилонитрил бутадиен стирол 1.02 - 1.06 -40 110 Не стоек 40-90 210-240
ABS+PA АБС + ПА Смесь АБС-пластика и полиамида 1.05 - 1.09 -40 180 Удовл 40-90 240-290
ABS+PC АБС + ПК Смесь АБС-пластика и поликарбоната 1.10 - 1.25 -50 130 Не стоек 80-100 250-280
ACS АХС Сополимер акрилонитрила 1.06 - 1.07 -35 100 Хорошая 50-60 200
ASA АСА 1.06 - 1.10 -25 80 Хорошая 50-85 210-240
CA АЦЭ Ацетат целлюлозы 1.26 - 1.30 -35 70 Хорошая стойкость 40-70 180-210
CAB АБЦ Ацетобутират целлюлозы 1.16 - 1.21 -40 90 Хорошая 40-70 180-220
CAP АПЦ Ацетопропионат целлюлозы 1.19 - 1.40 -40 100 Хорошая 40-70 190-225
CP АПЦ Ацетопропионат целлюлозы 1.15 - 1.20 -40 100 Хорошая 40-70 190-225
CPE ПХ Полиэтилен хлорированный 1.03 - 1.04 -20 60 Не стоек 80-96 160-240
CPVC ХПВХ Хлорированный поливинхлорид 1.35 - 1.50 -25 60 Не стоек 90-100 200
EEA СЭА Сополимер этилена и этилен-акрилата 0.92 - 0.93 -50 70 Не стоек 60 205-315
EVA СЭВ Сополимер этилена и винилацетата 0.92 - 0.96 -60 80 Не стоек 24-40 120-180
FEP Ф-4МБ Cополимер тетрафторэтилена 2.12 - 2.17 -250 200 Высокая 200-230 330-400
GPPS ПС Полистирол общего назначения 1.04 - 1.05 -60 80 Не стоек 60-80 200
HDPE ПЭНД Полиэтилен высокой плотности 0.94 - 0.97 -80 110 Не стоек 35-65 180-240
HIPS УПС Ударопрочный полистирол 1.04 - 1.05 -60 70 Не стоек 60-80 200
HMWDPE ВМП Высоко-молекулярный полиэтилен 0.93 - 0.95 -269 120 Удовл. 40-70 130-140
In И Иономер 0.94 - 0.97 -110 60 Удовл. 50-70 180-220
LCP ЖКП Жидко-кристаллические полимеры 1.40 - 1.41 -100 260 Хорошая 260-280 320-350
LDPE ПЭВД Полиэтилен низкой плотности 0.91 - 0.925 -120 60 Не стоек 50-70 180-250
MABS АБС-прозрач Сополимер метилметакрилата 1.07 - 1.11 -40 90 Не стоек 40-90 210-240
MDPE ПЭСД Полиэтилен среднего давления 0.93 - 0.94 -50 60 Не стоек 50-70 180-250
PA6 ПА6 Полиамид 6 1.06 - 1.20 -60 215 Хорошая 21-94 250-305
PA612 ПА612 Полиамид612 1.04 - 1.07 -120 210 Хорошая 30-80 250-305
PA66 ПА66 Полиамид 66 1.06 - 1.19 -40 245 Хорошая 21-94 315-371
PA66G30 ПА66Ст30% Стекло-наполненный полиамид 1.37 - 1.38 -40 220 Высокая 30-85 260-310
PBT ПБТ Полибутилен-терефталат 1.20 - 1.30 -55 210 Удовл. 60-80 250-270
PC ПК Поликарбонат 1.19 - 1.20 -100 130 Не стоек 80-110 250-340
PEC ПЭК Полиэфир-карбонат 1.22 - 1.26 -40 125 Хорошая 75-105 240-320
PEI ПЭИ Полиэфиримид 1.27 - 1.37 -60 170 Высокая 50-120 330-430
PES ПЭС Полиэфир-сульфон 1.36 - 1.58 -100 190 Хорошая 110-130 300-360
PET ПЭТ Полиэтилен-терефталат 1.26 - 1.34 -50 150 Удовл. 60-80 230-270
PMMA ПММА Полиметил-метакрилат 1.14 - 1.19 -70 95 Хорошая 70-110 160-290
POM ПОМ Полифор-мальдегид 1.33 - 1.52 -60 135 Хорошая 75-90 155-185
PP ПП Полипропилен 0.92 - 1.24 -60 110 Хорошая 40-60 200-280
PPO ПФО Полифенилен-оксид 1.04 - 1.08 -40 140 Удовл. 120-150 340-350
PPS ПФС Полифенилен-сульфид 1.28 - 1.35 -60 240 Удовл. 120-150 340-350
PPSU ПАСФ Полифенилен-сульфон 1.29 - 1.44 -40 185 Удовл. 80-120 320-380
PS ПС Полистирол 1.04 - 1.1 -60 80 Не стоек 60-80 200
PVC ПВХ Поливинил-хлорид 1.13 - 1.58 -20 60 Удовл. 40-50 160-190
PVDF Ф-2М Фторопласт-2М 1.75 - 1.80 -60 150 Высокая 60-90 180-260
SAN САН Сополимер стирола и акрилонитрила 1.07 - 1.08 -70 85 Высокая 65-75 180-270
TPU ТЭП Термопластичные полиуретены 1.06 - 1.21 -70 120 Высокая 38-40 160-190

Похожие статьи

  • Замораживаем рыжики на зиму Хранение соленых рыжиков

    Вкусные, питательные и полезные рыжики отлично подходят для добавления в повседневные блюда или в качестве изысканного угощения к праздничному столу. Наиболее популярным вариантом их приготовления является засолка холодным способом,...

  • Золотые кони хана батыя - легендарные сокровища, точное местонахождение

    из Энциклопедии чудес, загадок и тайн ЗОЛОТЫЕ КОНИ ХАНА БАТЫЯ - легендарные сокровища, точное местонахождение которых до сих пор неизвестно. История коней примерно такова: После того, как хан Батый разорил Рязань и Киев, он...

  • Какую говядину лучше варить

    Покупка мяса - это самая существенная часть продовольственного бюджета любой семьи (за исключением вегетарианской). Кто-то предпочитает свинину, кто-то птицу, однако наиболее полезной и питательной считается говядина. Это мясо не самое...

  • Какие социальные сети существуют для общения с друзьями и родственниками

    Сегодня соцсети настолько прочно укоренились в нашей жизни, что состав пятерки самых популярных социальных площадок практически не меняется из года в год. Тем не менее, масштабы проникновения и использования этих соцсетей отличаются в...

  • Обзор самых новых лекарств от рака

    Предлагаю вашему вниманию простые, проверенные временем, средства народной медицины, которые помогут при онкологических заболеваниях .Звездчатка (мокрица). Сок растения, крепкий настой и отвар применяется для местных ванн и примочек при...

  • Самые действенные способы защиты от сглаза, порчи, колдовства, зависти

    Признаками магического нападения могут являться: любые физические, психоэмоциональные отклонения без особой на-то причины. С целью защиты в отражения удара в той же самой магии выработаны довольно мощные приемы, которые отрабатывались не...