Уравнение плоскости заданной 3 точками. Уравнение плоскости, которая проходит через три заданные точки, не лежащие на одной прямой

Начальный уровень

Координаты и векторы. Исчерпывающий гид (2019)

В этой статье мы с тобой начнем обсуждение одной «палочки-выручалочки», которая позволит тебе свести многие задачи по геометрии к простой арифметике. Эта «палочка» может существенно облегчить тебе жизнь особенно в том случае, когда ты неуверенно чувствуешь себя в построении пространственных фигур, сечений и т. д. Все это требует определенного воображения и практических навыков. Метод же, который мы здесь начнем рассматривать, позволит тебе практически полностью абстрагироваться от всякого рода геометрических построений и рассуждений. Метод носит название «метод координат» . В данной статье мы с тобой рассмотрим следующие вопросы:

  1. Координатная плоскость
  2. Точки и векторы на плоскости​
  3. Построение вектора по двум точкам​
  4. Длина вектора (расстояние между двумя точками)​
  5. Координаты середины отрезка​
  6. Скалярное произведение векторов​
  7. Угол между двумя векторами​

Я думаю, ты уже догадался, почему метод координат так называется? Верно, он получил такое название, так как он оперирует не с геометрическими объектами, а с их числовыми характеристиками (координатами). А само преобразование, позволяющее перейти от геометрии к алгебре, заключается во введении системы координат. Если исходная фигура была плоской, то координаты двухмерные, а если фигура объемная, то координаты трехмерные. В данной статье мы будем рассматривать только двухмерный случай. А основная цель статьи - научить тебя пользоваться некоторыми базовыми приемами метода координат (они иногда оказываются полезными при решении задач по планиметрии в части B ЕГЭ). Обсуждению же методов решения задач С2 (задача по стереометрии) посвящены следующие два раздела по этой тематике.

С чего было бы логично начать обсуждение метода координат? Наверное, с понятия системы координат. Вспомни, когда ты с нею впервые столкнулся. Мне кажется, что в 7 классе, когда ты узнал про существование линейной функции, например. Напомню, ты строил ее по точкам. Помнишь? Ты выбирал произвольное число, подставлял ее в формулу и вычислял таким образом. Например, если, то, если же, то и т. д. Что же ты получал в итоге? А получал ты точки с координатами: и. Далее ты рисовал «крестик» (систему координат), выбирал на ней масштаб (сколько клеточек у тебя будет единичным отрезком) и отмечал на ней полученные тобою точки, которые затем соединял прямой линией, полученная линия и есть график функции.

Тут есть несколько моментов, которые стоит объяснить тебе чуть подробнее:

1. Единичный отрезок ты выбираешь из соображений удобства, так, чтобы все красиво и компактно умещалось на рисунке

2. Принято, что ось идет слева направо, а ось - cнизу вверх

3. Они пересекаются под прямым углом, а точка их пересечения называется началом координат. Она обозначается буквой.

4. В записи координаты точки, например, слева в скобках стоит координата точки по оси, а справа, по оси. В частности, просто означает, что у точки

5. Для того, чтобы задать любую точку на координатной оси, требуется указать ее координаты (2 числа)

6. Для любой точки, лежащей на оси,

7. Для любой точки, лежащей на оси,

8. Ось называется осью абсцисс

9. Ось называется осью ординат

Теперь давай с тобой сделаем следующий шаг: отметим две точки. Соединим эти две точки отрезком. И поставим стрелочку так, как будто мы проводим отрезок из точки к точке: то есть сделаем наш отрезок направленным!

Вспомни, как еще называется направленный отрезок? Верно, он называется вектором!

Таким образом, если мы соединим точку c точкой, причем началом у нас будет точка A, а концом - точка B, то мы получим вектор. Это построение ты тоже делал в 8 классе, помнишь?

Оказывается, векторы, как и точки, можно обозначать двумя цифрами: эти цифры называются координатами вектора. Вопрос: как ты думаешь, достаточно ли нам знать координаты начала и конца вектора, чтобы найти его координаты? Оказывается, что да! И делается это очень просто:

Таким образом, так как в векторе точка - начало, а - конец, то вектор имеет следующие координаты:

Например, если, то координаты вектора

Теперь давай сделаем наоборот, найдем координаты вектора. Что нам для этого нужно поменять? Да, нужно поменять местами начало и конец: теперь начало вектора будет в точке, а конец - в точке. Тогда:

Посмотри внимательно, чем отличаются векторы и? Единственное их отличие - это знаки в координатах. Они противоположны. Этот факт принято записывать вот так:

Иногда, если не оговаривается специально, какая точка является началом вектора, а какая - концом, то векторы обозначают не двумя заглавными буквами, а одной строчной, например: , и т. д.

Теперь немного потренируйся сам и найди координаты следующих векторов:

Проверка:

А теперь реши задачку чуть посложнее:

Век-тор с на-ча-лом в точке имеет ко-ор-ди-на-ты. Най-ди-те абс-цис-су точки.

Все то же довольно прозаично: Пусть - координаты точки. Тогда

Систему я составил по определению того, что такое координаты вектора. Тогда точка имеет координаты. Нас интересует абсцисса. Тогда

Ответ:

Что еще можно делать с векторами? Да почти все то же самое, что и с обычными числами (разве что делить нельзя, зато умножать можно аж двумя способами, один из которых мы здесь обсудим чуть позже)

  1. Векторы можно складывать друг с другом
  2. Векторы можно вычитать друг из друга
  3. Векторы можно умножать (или делить) на произвольное ненулевое число
  4. Векторы можно умножать друг на друга

Все эти операции имеют вполне наглядное геометрическое представление. Например, правило треугольника (или параллелограмма) для сложения и вычитания:

Вектор растягивается или сжимается или меняет направление при умножении или делении на число:

Однако здесь нас будет интересовать вопрос, что же происходит с координатами.

1. При сложении (вычитании) двух векторов, мы складываем (вычитаем) поэлементно их координаты. То есть:

2. При умножении (делении) вектора на число, все его координаты умножаются (делятся) на это число:

Например:

· Най-ди-те сумму ко-ор-ди-нат век-то-ра.

Давай вначале найдем координаты каждого из векторов. Оба они имеют одинаковое начало - точку начала координат. Концы у них разные. Тогда, . Теперь вычислим координаты вектора Тогда сумма координат полученного вектора равна.

Ответ:

Теперь реши сам следующую задачу:

· Найти сумму координат вектора

Проверяем:

Давай рассмотрим теперь следующую задачу: у нас есть две точки на координатной плоскости. Как найти расстояние между ними? Пусть первая точка будет, а вторая. Обозначим расстояние между ними через. Давай сделаем для наглядности следующий чертеж:

Что я сделал? Я, во-первых, соединил точки и,а также из точки провел линию, параллельную оси, а из точки провел линию, параллельную оси. Они пересеклись в точке, образовав при этом замечательную фигуру? Чем она замечательна? Да мы с тобой почти что все знаем про прямоугольный треугольник. Ну уж теорему Пифагора - точно. Искомый отрезок - это гипотенуза этого треугольника, а отрезки - катеты. Чему равны координаты точки? Да, их несложно найти по картинке: Так как отрезки параллельны осям и соответственно, то их длины легко найти: если обозначить длины отрезков соответственно через, то

Теперь воспользуемся теоремой Пифагора. Длины катетов нам известны, гипотенузу мы найдем:

Таким образом, расстояние между двумя точками - это корень из суммы квадратов разностей из координат. Или же - расстояние между двумя точками - это длина отрезка, их соединяющего. Легко заметить, что расстояние между точками не зависит от направления. Тогда:

Отсюда делаем три вывода:

Давай немного поупражняемся в вычислении расстояния между двумя точками:

Например, если, то расстояние между и равно

Или пойдем по-другому: найдем координаты вектора

И найдем длину вектора:

Как видишь, одно и то же!

Теперь немного потренируйся сам:

Задание: найти расстояние между указанными точками:

Проверяем:

Вот еще пара задачек на ту же формулу, правда звучат они немного по-другому:

1. Най-ди-те квад-рат длины век-то-ра.

2. Най-ди-те квад-рат длины век-то-ра

Я так думаю, ты с ними без труда справился? Проверяем:

1. А это на внимательность) Мы уже нашли координаты векторов и ранее: . Тогда вектор имеет координаты. Квадрат его длины будет равен:

2. Найдем координаты вектора

Тогда квадрат его длины равен

Ничего сложного, правда? Обычная арифметика, не более того.

Следующие задачки нельзя однозначно классифицировать, они скорее на общую эрудицию и на умение рисовать простенькие картинки.

1. Най-ди-те синус угла на-кло-на от-рез-ка, со-еди-ня-ю-ще-го точки, с осью абсцисс.

и

Как мы будем поступать здесь? Нужно найти синус угла между и осью. А где мы умеем искать синус? Верно, в прямоугольном треугольнике. Так что нам нужно сделать? Построить этот треугольник!

Поскольку координаты точки и, то отрезок равен, а отрезок. Нам нужно найти синус угла. Напомню тебе, что синус - это отношение противолежащего катета к гипотенузе, тогда

Что нам осталось сделать? Найти гипотенузу. Ты можешь сделать это двумя способами: по теореме Пифагора (катеты-то известны!) или по формуле расстояния между двумя точками (на самом деле одно и то же, что и первый способ!). Я пойду вторым путем:

Ответ:

Следующая задача покажется тебе еще проще. Она - на координаты точки.

Задача 2. Из точки опу-щен пер-пен-ди-ку-ляр на ось абс-цисс. Най-ди-те абс-цис-су ос-но-ва-ния пер-пен-ди-ку-ля-ра.

Давай сделаем рисунок:

Основание перпендикуляра - это та точка, в которой он пересекает ось абсцисс (ось) у меня это точка. По рисунку видно, что имеет координаты: . Нас интересует абсцисса - то есть «иксовая» составляющая. Она равна.

Ответ: .

Задача 3. В условиях предыдущей задачи найти сумму расстояний от точки до осей координат.

Задача - вообще элементарная, если знать, что такое расстояние от точки до осей. Ты знаешь? Я надеюсь, но все же напомню тебе:

Итак, на моем рисунке, расположенном чуть выше, я уже изобразил один такой перпендикуляр? К какой он оси? К оси. И чему же равна тогда его длина? Она равна. Теперь сам проведи перпендикуляр к оси и найди его длину. Она будет равна, ведь так? Тогда их сумма равна.

Ответ: .

Задача 4. В условиях задачи 2, найдите ординату точки, симметричной точке относительно оси абсцисс.

Я думаю, тебе интуитивно ясно, что такое симметрия? Очень многие объекты ею обладают: многие здания, столы, самолеты, многие геометрические фигуры: шар, цилиндр, квадрат, ромб и т. д. Грубо говоря, симметрию можно понимать вот как: фигура состоит из двух (или более) одинаковых половинок. Такая симметрия называется осевой. А что тогда такое ось? Это как раз та линия, по которой фигуру можно, условно говоря, «разрезать» на одинаковые половинки (на данной картинке ось симметрии - прямая):

Теперь давай вернемся к нашей задаче. Нам известно, что мы ищем точку, симметричную относительно оси. Тогда эта ось - ось симметрии. Значит, нам нужно отметить такую точку, чтобы ось разрезала отрезок на две равные части. Попробуй сам отметить такую точку. А теперь сравни с моим решением:

У тебя получилось так же? Хорошо! У найденной точки нас интересует ордината. Она равна

Ответ:

А теперь скажи мне, подумав секунд, чему будет равна абсцисса точки, симметричной точке A относительно оси ординат? Каков твой ответ? Правильный ответ: .

В общем случае правило можно записать вот так:

Точка, симметричная точке относительно оси абсцисс, имеет координаты:

Точка, симметричная точке относительно оси ординат, имеет координаты:

Ну и теперь совсем страшная задача : найти координаты точки, симметричной точке, относительно начала координат. Ты вначале подумай сам, а потом посмотри на мой рисунок!

Ответ:

Теперь задачка на параллелограмм:

Задача 5: Точки яв-ля-ют-ся вер-ши-на-ми па-рал-ле-ло-грам-ма. Най-ди-те ор-ди-на-ту точки.

Можно решать эту задачу двумя способами: логикой и методом координат. Я вначале применю метод координат, а потом расскажу тебе, как можно решить иначе.

Совершенно ясно, что абсцисса точки равна. (она лежит на перпендикуляре, проведенной из точки к оси абсцисс). Нам нужно найти ординату. Воспользуемся тем, что наша фигура - параллелограмм, это значит, что. Найдем длину отрезка, используя формулу расстояния между двумя точками:

Опускаем перпендикуляр, соединяющий точку с осью. Точку пересечения обозначу буквой.

Длина отрезка равна. (найди сам задачу, где мы обсуждали этот момент), тогда найдем длину отрезка по теореме Пифагора:

Длина отрезка - в точности совпадает с его ординатой.

Ответ: .

Другое решение (я просто приведу рисунок, который его иллюстрирует)

Ход решения:

1. Провести

2. Найти координаты точки и длину

3. Доказать, что.

Еще одна задачка на длину отрезка :

Точки яв-ля-ют-ся вер-ши-на-ми тре-уголь-ни-ка. Най-ди-те длину его сред-ней линии, па-рал-лель-ной.

Ты помнишь, что такое средняя линия треугольника? Тогда для тебя эта задача элементарна. Если не помнишь, то я напомню: средняя линия треугольника - это линия, которая соединяет середины противоположных сторон. Она параллельна основанию и равна его половине.

Основание - это отрезок. Его длину нам приходилось искать ранее, оно равно. Тогда длина средней линии вдвое меньше и равна.

Ответ: .

Комментарий: эту задачу можно решить и другим способом, к которому мы обратимся чуть позже.

А пока - вот тебе несколько задачек, потренируйся на них, они совсем простые, но помогают «набивать руку», на использовании метода координат!

1. Точки яв-ля-ют-ся вер-ши-на-ми тра-пе-ции. Най-ди-те длину ее сред-ней линии.

2. Точки и яв-ля-ют-ся вер-ши-на-ми па-рал-ле-ло-грам-ма. Най-ди-те ор-ди-на-ту точки.

3. Най-ди-те длину от-рез-ка, со-еди-ня-ю-ще-го точки и

4. Най-ди-те пло-щадь за-кра-шен-ной фи-гу-ры на ко-ор-ди-нат-ной плос-ко-сти.

5. Окруж-ность с цен-тром в на-ча-ле ко-ор-ди-нат про-хо-дит через точку. Най-ди-те ее ра-ди-ус.

6. Най-ди-те ра-ди-ус окруж-но-сти, опи-сан-ной около пря-мо-уголь-ни-ка, вер-ши-ны ко-то-ро-го имеют ко-ор-ди-на-ты со-от-вет-ствен-но

Решения:

1. Известно, что средняя линия трапеции равна полусумме ее оснований. Основание равно, а основание. Тогда

Ответ:

2. Проще всего решить эту задачу так: заметить, что (правило параллелограмма). Вычислить координаты векторов и не представляет труда: . При сложении векторов координаты складываются. Тогда имеет координаты. Эти же координаты имеет и точка, поскольку начало вектора - это точка с координатами. Нас интересует ордината. Она равна.

Ответ:

3. Действуем сразу по формуле расстояния между двумя точками:

Ответ:

4. Посмотри на картинку и скажи, между какими двумя фигурами «зажата» заштрихованная область? Она зажата между двумя квадратами. Тогда площадь искомой фигуры равна площади большого квадрата минус площадь маленького. Сторона маленького квадрата - это отрезок, соединяющий точки и Его длина равна

Тогда площадь маленького квадрата равна

Точно так же поступаем и с большим квадратом: его сторона - это отрезок, соединяющий точки и Его длина равна

Тогда площадь большого квадрата равна

Площадь искомой фигуры найдем по формуле:

Ответ:

5. Если окружность имеет в качестве центра начало координат и проходит через точку, то ее радиус будет в точности равен длине отрезка (сделай рисунок и ты поймешь, почему это очевидно). Найдем длину этого отрезка:

Ответ:

6. Известно, что радиус описанной около прямоугольника окружности равен половине его диагонали. Найдем длину любой из двух диагоналей (ведь в прямоугольнике они равны!)

Ответ:

Ну что, ты со всем справился? Было не очень сложно разобраться, ведь так? Правило здесь одно - уметь сделать наглядную картинку и просто «считать» с нее все данные.

Нам осталось совсем немного. Есть еще буквально два момента, которые бы мне хотелось обсудить.

Давай попробуем решить вот такую нехитрую задачку. Пусть даны две точки и. Найти координаты середины отрезка. Решение этой задачки следующее: пусть точка - искомая середина, тогда имеет координаты:

То есть: координаты середины отрезка = среднее арифметическое соответствующих координат концов отрезка.

Это правило очень простое и как правило не вызывает затруднений у учащихся. Давай посмотрим, в каких задачках и как оно употребляется:

1. Най-ди-те ор-ди-на-ту се-ре-ди-ны от-рез-ка, со-еди-ня-ю-ще-го точки и

2. Точки яв-ля-ют-ся вер-ши-на-ми че-ты-рех-уголь-ни-ка. Най-ди-те ор-ди-на-ту точки пе-ре-се-че-ния его диа-го-на-лей.

3. Най-ди-те абс-цис-су цен-тра окруж-но-сти, опи-сан-ной около пря-мо-уголь-ни-ка, вер-ши-ны ко-то-ро-го имеют ко-ор-ди-на-ты со-от-вет-ствен-но.

Решения:

1. Первая задачка - просто классика. Действуем сразу по определению середины отрезка. Она имеет координаты. Ордината равна.

Ответ:

2. Легко видеть, что данный четырехугольник является параллелограммом (даже ромбом!). Ты и сам можешь это доказать, вычислив длины сторон и сравнив их между собой. Что я знаю про параллелограмм? Его диагонали точкой пересечения делятся пополам! Ага! Значит точка пересечения диагоналей - это что? Это середина любой из диагоналей! Выберу, в частности диагональ. Тогда точка имеет координаты Ордината точки равна.

Ответ:

3. С чем совпадает центр описанной около прямоугольника окружности? Он совпадает с точкой пересечения его диагоналей. А что ты знаешь про диагонали прямоугольника? Они равны и точкой пересечения делятся пополам. Задача свелась к предыдущей. Возьму, например, диагональ. Тогда если - центр описанной окружности, то - середина. Ищу координаты: Абсцисса равна.

Ответ:

Теперь потренируйся немного самостоятельно, я лишь приведу ответы к каждой задачи, чтобы ты мог себя проверить.

1. Най-ди-те ра-ди-ус окруж-но-сти, опи-сан-ной около тре-уголь-ни-ка, вер-ши-ны ко-то-ро-го имеют ко-ор-ди-на-ты

2. Най-ди-те ор-ди-на-ту цен-тра окруж-но-сти, опи-сан-ной около тре-уголь-ни-ка, вер-ши-ны ко-то-ро-го имеют ко-ор-ди-на-ты

3. Ка-ко-го ра-ди-у-са долж-на быть окруж-ность с цен-тром в точке чтобы она ка-са-лась оси абс-цисс?

4. Най-ди-те ор-ди-на-ту точки пе-ре-се-че-ния оси и от-рез-ка, со-еди-ня-ю-ще-го точки и

Ответы:

Все удалось? Очень на это надеюсь! Теперь - последний рывок. Сейчас будь особенно внимателен. Тот материал, который я сейчас буду объяснять, имеет непосредственное отношение не только к простым задачам на метод координат из B части, но также встречается повсеместно и в задаче С2.

Какое из своих обещаний я еще не сдержал? Вспомни, какие операции над векторами я обещал ввести и какие в конечном счете ввел? Я точно ничего не забыл? Забыл! Забыл объяснить, что значит умножение векторов.

Есть два способа умножить вектор на вектор. В зависимости от выбранного способа у нас будут получаться объекты разной природы:

Векторное произведение выполняется довольно хитро. Как его делать и для чего оно нужно, мы с тобой обсудим в следующей статье. А в этой мы остановимся на скалярном произведении.

Есть аж два способа, позволяющих нам его вычислить:

Как ты догадался, результат должен быть один и тот же! Итак, давай вначале рассмотрим первый способ:

Скалярное произведение через координаты

Найти: - общепринятое обозначение скалярного произведения

Формула для вычисления следующая:

То есть скалярное произведение = сумма произведений координат векторов!

Пример:

Най-ди-те

Решение:

Найдем координаты каждого из векторов:

Вычисляем скалярное произведение по формуле:

Ответ:

Видишь, абсолютно ничего сложного!

Ну-ка, теперь попробуй сам:

· Най-ди-те ска-ляр-ное про-из-ве-де-ние век-то-ров и

Справился? Может, и подвох небольшой заметил? Давай проверим:

Координаты векторов, как в прошлой задаче! Ответ: .

Помимо координатного, есть и другой способ вычислить скалярное произведение, а именно, через длины векторов и косинус угла между ними:

Обозначает угол между векторами и.

То есть скалярное произведение равно произведению длин векторов на косинус угла между ними.

Зачем же нам эта вторая формула, если у нас есть первая, которая намного проще, в ней по крайней мере нет никаких косинусов. А нужна она для того, что из первой и второй формулы мы с тобой сможем вывести, как находить угол между векторами!

Пусть Тогда вспоминай формулу для длины вектора!

Тогда если я подставлю эти данные в формулу скалярного произведения, то я получу:

Но с другой стороны:

Таким образом, что же мы с тобой получили? У нас теперь есть формула, позволяющая вычислять угол между двумя векторами! Иногда ее для краткости записывают еще и так:

То есть алгоритм вычисления угла между векторами следующий:

  1. Вычисляем скалярное произведение через координаты
  2. Находим длины векторов и перемножаем их
  3. Делим результат пункта 1 на результат пункта 2

Давай потренируемся на примерах:

1. Най-ди-те угол между век-то-ра-ми и. Ответ дайте в гра-ду-сах.

2. В условиях предыдущей задачи, найдите косинус между векторами

Поступим так: первую задачу я помогу тебе решить, а вторую попробуй сделать сам! Согласен? Тогда начинаем!

1. Эти вектора - наши старые знакомые. Их скалярное произведение мы уже считали и оно было равно. Координаты у них такие: , . Тогда найдем их длины:

Тогда ищем косинус между векторами:

Косинус какого угла равен? Это угол.

Ответ:

Ну а теперь сам реши вторую задачу, а потом сравним! Я приведу лишь очень краткое решение:

2. имеет координаты, имеет координаты.

Пусть - угол между векторами и, тогда

Ответ:

Надо отметить, что задачи непосредственно на вектора и метод координат в части B экзаменационной работы достаточно редки. Однако, подавляющее большинство задач C2 можно легко решить, прибегнув ко введению системы координат. Так что ты можешь считать эту статью фундаментом, на основе которого мы будем делать достаточно хитрые построения, которые понадобятся нам для решения сложных задач.

КООРДИНАТЫ И ВЕКТОРЫ. СРЕДНИЙ У​РОВЕНЬ

Мы с тобой продолжаем изучать метод координат. В прошлой части мы вывели ряд важных формул, которые позволяют:

  1. Находить координаты вектора
  2. Находить длину вектора (альтернативно: расстояние между двумя точками)
  3. Складывать, вычитать векторы. Умножать их на вещественное число
  4. Находить середину отрезка
  5. Вычислять скалярное произведение векторов
  6. Находить угол между векторами

Конечно, в эти 6 пунктов не укладывается весь координатный метод. Он лежит в основе такой науки, как аналитическая геометрия, с которой тебе предстоит познакомиться в ВУЗе. Я лишь хочу построить фундамент, который позволит тебе решать задачи в едином гос. экзамене. С задачами части B мы разобрались в Теперь пора переходить на качественно новый уровень! Эта статья будет посвящена методу решения тех задач С2, в которых будет разумно перейти к методу координат. Эта разумность определяется тем, что в задаче требуется найти, и какая фигура дана. Итак, я бы стал применять метод координат, если ставятся вопросы:

  1. Найти угол между двумя плоскостями
  2. Найти угол между прямой и плоскостью
  3. Найти угол между двумя прямыми
  4. Найти расстояние от точки до плоскости
  5. Найти расстояние от точки до прямой
  6. Найти расстояние от прямой до плоскости
  7. Найти расстояние между двумя прямыми

Если данная в условии задачи фигура является телом вращения (шар, цилиндр, конус …)

Подходящими фигурами для метода координат являются:

  1. Прямоугольный параллелепипед
  2. Пирамида (треугольная, четырехугольная, шестиугольная)

Также по моему опыту нецелесообразно использовать метод координат для :

  1. Нахождения площадей сечений
  2. Вычисления объемов тел

Однако следует сразу отметить, что три «невыгодные» для метода координат ситуации на практике достаточно редки. В большинстве же задач он может стать твоим спасителем, особенно если ты не очень силен в трехмерных построениях (которые порою бывают довольно замысловатыми).

Какими являются все перечисленные мною выше фигуры? Они уже не плоские, как, например, квадрат, треугольник, окружность, а объемные! Соответственно, нам нужно рассматривать уже не двухмерную, а трехмерную систему координат. Строится она достаточно легко: просто помимо оси абсцисс и ординат, мы введем еще одну ось, ось аппликат. На рисунке схематично изображено их взаимное расположение:

Все они являются взаимно перпендикулярными, пересекаются в одной точке, которую мы будем называть началом координат. Ось абсцисс, как и прежде, будем обозначать, ось ординат - , а введенную ось аппликат - .

Если раньше каждая точка на плоскости характеризовалась двумя числами - абсциссой и ординатой, то каждая точка в пространстве уже описывается тремя числами - абсциссой, ординатой, аппликатой. Например:

Соответственно абсцисса точки равна, ордината - , а аппликата - .

Иногда абсциссу точки еще называют проекцией точки на ось абсцисс, ординату - проекцией точки на ось ординат, а аппликату - проекцией точки на ось аппликат. Соответственно, если задана точка то, точку с координатами:

называют проекцией точки на плоскость

называют проекцией точки на плоскость

Встает естественный вопрос: справедливы ли все формулы, выведенные для двухмерного случая, в пространстве? Ответ утвердительный, они справедливы и имеют тот же самый вид. За маленькой деталью. Я думаю, ты уже сам догадался, за какой именно. Во все формулы мы должны будем добавить еще один член, отвечающий за ось аппликат. А именно.

1. Если заданы две точки: , то:

  • Координаты вектора:
  • Расстояние между двумя точками (или длина вектора)
  • Середина отрезка имеет координаты

2. Если дано два вектора: и, то:

  • Их скалярное произведение равно:
  • Косинус угла между векторами равен:

Однако с пространством не все так просто. Как ты понимаешь, добавление еще одной координаты вносит существенное разнообразие в спектр фигур, «живущих» в этом пространстве. И для дальнейшего повествования мне потребуется ввести некоторое, грубо говоря, «обобщение» прямой. Этим «обобщением» будет плоскость. Что ты знаешь про плоскость? Попробуй ответить на вопрос, а что такое плоскость? Очень сложно сказать. Однако мы все интуитивно представляем, как она выглядит:

Грубо говоря, это некий бесконечный «лист», засунутый в пространство. «Бесконечность» следует понимать, что плоскость распространяется во все стороны, то есть ее площадь равна бесконечности. Однако, это объяснение «на пальцах» не дает ни малейшего представления о структуре плоскости. А нас будет интересовать именно она.

Давай вспомним одну из основных аксиом геометрии:

  • через две различные точки на плоскости проходит прямая, притом только одна:

Или ее аналог в пространстве:

Конечно, ты помнишь, как по двум заданным точкам вывести уравнение прямой, это совсем нетрудно: если первая точка имеет координаты: а вторая, то уравнение прямой будет следующим:

Это ты проходил еще в 7 классе. В пространстве уравнение прямой выглядит вот так: пусть у нас даны две точки с координатами: , то уравнение прямой, через них проходящей, имеет вид:

Например, через точки, проходит прямая:

Как это следует понимать? Это следует понимать вот как: точка лежит на прямой, если ее координаты удовлетворяют следующей системе:

Нас не очень будет интересовать уравнение прямой, но нам нужно обратить внимание на очень важное понятие направляющего вектора прямой. - любой ненулевой вектор, лежащий на данной прямой или параллельный ей.

Например, оба вектора, являются направляющими векторами прямой. Пусть - точка, лежащая на прямой, а - ее направляющий вектор. Тогда уравнение прямой можно записать в следующем виде:

Еще раз повторюсь, мне не очень будет интересно уравнение прямой, но мне очень нужно, чтобы ты запомнил, что такое направляющий вектор! Еще раз: это ЛЮБОЙ ненулевой вектор, лежащий на прямой, или параллельный ей.

Вывести уравнение плоскости по трем заданным точкам уже не так тривиально, и обычно этот вопрос не рассматривается в курсе средней школы. А зря! Этот прием жизненно необходим, когда мы прибегаем к методу координат для решения сложных задач. Однако, я предполагаю, что ты полон желания научиться чему-то новому? Более того, ты сможешь поразить своего преподавателя в ВУЗе, когда выяснится, что ты уже умеешь с методикой, которую обычно изучают в курсе аналитической геометрии. Итак, приступим.

Уравнение плоскости не слишком отличается от уравнения прямой на плоскости, а именно оно имеет вид:

некоторые числа (не все равные нулю), а переменные, например: и т.д. Как видишь, уравнение плоскости не очень отличается от уравнения прямой (линейной функции). Однако, вспомни, что мы с тобой утверждали? Мы говорили, что если у нас есть три точки, не лежащие на одной прямой, то уравнение плоскости однозначно по ним восстанавливается. Но как? Попробую тебе объяснить.

Поскольку уравнение плоскости имеет вид:

А точки принадлежат этой плоскости, то при подстановке координат каждой точки в уравнение плоскости мы должны получать верное тождество:

Таким образом, встает необходимость решать три уравнения аж с неизвестными! Дилемма! Однако всегда можно предполагать, что (для этого нужно разделить на). Таким образом, мы получим три уравнения с тремя неизвестными:

Однако мы не будем решать такую систему, а выпишем загадочное выражение, которое из него следует:

Уравнение плоскости, проходящей через три заданные точки

\[\left| {\begin{array}{*{20}{c}}{x - {x_0}}&{{x_1} - {x_0}}&{{x_2} - {x_0}}\\{y - {y_0}}&{{y_1} - {y_0}}&{{y_2} - {y_0}}\\{z - {z_0}}&{{z_1} - {z_0}}&{{z_2} - {z_0}}\end{array}} \right| = 0\]

Стоп! Это еще что такое? Какой-то очень необычный модуль! Однако объект, который ты видишь перед собой не имеет ничего общего с модулем. Этот объект называется определителем третьего порядка. Отныне и впредь, когда ты будешь иметь дело с методом координат на плоскости, тебе очень часто будут встречаться эти самые определители. Что же такое определитель третьего порядка? Как ни странно, это всего-навсего число. Осталось понять, какое конкретно число мы будем сопоставлять с определителем.

Давай вначале запишем определитель третьего порядка в более общем виде:

Где - некоторые числа. Причем под первым индеком мы понимаем номер строки, а под индеком - номер столбца. Например, означает, что данное число стоит на пересечении второй строки и третьего столбца. Давай поставим следующий вопрос: каким именно образом мы будем вычислять такой определитель? То есть, какое конкретно число мы будем ему сопоставлять? Для определителя именно третьего порядка есть эвристическое (наглядное) правило треугольника оно выглядит следующим образом:

  1. Произведение элементов главной диагонали (с верхнего левого угла до нижнего правого) произведение элементов, образующих первый треугольник «перпендикулярный» главной диагонали произведение элементов, образующих второй треугольник «перпендикулярный» главной диагонали
  2. Произведение элементов побочной диагонали (с верхнего правого угла до нижнего левого) произведение элементов, образующих первый треугольник «перпендикулярный» побочной диагонали произведение элементов, образующих второй треугольник «перпендикулярный» побочной диагонали
  3. Тогда определитель равен разности значений, полученных на шаге и

Если записать все это цифрами, то мы получим следующее выражение:

Тем не менее, запоминать способ вычисления в таком виде не нужно, достаточно в голове просто держать треугольники и саму идею, что с чем складывается и что из чего затем вычитается).

Давай проиллюстрируем метод треугольников на примере:

1. Вычислить определитель:

Давай разбираться, что мы складываем, а что - вычитаем:

Слагаемые, которые идут с «плюсом»:

Это главная диагональ: произведение элементов равно

Первый треугольник, «перпендикулярный главной диагонали: произведение элементов равно

Второй треугольник, «перпендикулярный главной диагонали: произведение элементов равно

Складываем три числа:

Слагаемые, которые идут с «минусом»

Это побочная диагональ: произведение элементов равно

Первый треугольник, «перпендикулярный побочной диагонали: произведение элементов равно

Второй треугольник, «перпендикулярный побочной диагонали: произведение элементов равно

Складываем три числа:

Все, что осталось сделать - это вычесть из суммы слагаемых «с плюсом» сумму слагаемых «с минусом»:

Таким образом,

Как видишь, ничего сложного и сверхъестественного в вычислении определителей третьего порядка нет. Просто важно помнить про треугольники и не допускать арифметических ошибок. Теперь попробуй самостоятельно вычислить:

Проверяем:

  1. Первый треугольник, перпендикулярный главной диагонали:
  2. Второй треугольник, перпендикулярный главной диагонали:
  3. Сумма слагаемых с плюсом:
  4. Первый треугольник, перпендикулярный побочной диагонали:
  5. Второй треугольник, перпендикулярный побочной диагонали:
  6. Сумма слагаемых с минусом:
  7. Сумма слагаемых с плюсом минус сумма слагаемых с минусом:

Вот тебе еще пара определителей, вычисли их значения самостоятельно и сравни с ответами:

Ответы:

Ну что, все совпало? Отлично, тогда можно двигаться дальше! Если же есть затрудения, то совет мой таков: в интернете есть куча программ вычисления определителя он-лайн. Все, что тебе нужно - придумать свой определитель, вычислить его самостоятельно, а потом сравнить с тем, что посчитает программа. И так до тех пор, пока результаты не начнут совпадать. Уверен, этот момент не заставит себя долго ждать!

Теперь давай вернемся к тому определителю, который я выписал, когда говорил про уравнение плоскости, проходящей через три заданные точки:

Все, что тебе нужно - это вычислить его значение непосредственно (методом треугольников) и приравнять результат к нулю. Естественно, поскольку - переменные, то ты получишь некоторое выражение, от них зависящее. Именно это выражение и будет уравнением плоскости, проходящей через три заданные точки, не лежащие на одной прямой!

Давай проиллюстрируем сказанное на простом примере:

1. Построить уравнение плоскости, проходящей через точки

Cоставляем для этих трех точек определитель:

Упрощаем:

Теперь вычисляем его непосредственно по правилу треугольников:

\[{\left| {\begin{array}{*{20}{c}}{x + 3}&2&6\\{y - 2}&0&1\\{z + 1}&5&0\end{array}} \right| = \left({x + 3} \right) \cdot 0 \cdot 0 + 2 \cdot 1 \cdot \left({z + 1} \right) + \left({y - 2} \right) \cdot 5 \cdot 6 - }\]

Таким образом, уравнение плоскости, проходящей через точки, имеет вид:

Теперь попробуй решить одну задачку самостоятельно, а потом мы ее обсудим:

2. Найти уравнение плоскости, проходящей через точки

Ну что, давай теперь обсудим решение:

Составляем определитель:

И вычисляем его значение:

Тогда уравнение плоскости имеет вид:

Или же, сократив на, получим:

Теперь две задачи для самоконтроля:

  1. Построить уравнение плоскости, проходящей через три точки:

Ответы:

Все совпало? Опять-таки, если есть определенные затруднения, то мой совет таков: берешь из головы три точки (с большой степенью вероятности они не будут лежать на одной прямой), строишь по ним плоскость. А потом проверяешь себя он-лайн. Например, на сайте:

Однако при помощи определителей мы будем строить не только уравнение плоскости. Вспомни, я говорил тебе, что для векторов определено не только скалярное произведение. Есть еще векторное, а также смешанное произведение. И если скалярным произведением двух векторов и будет число, то векторным произведением двух векторов и будет вектор, причем данный вектор будет перпендикулярен к заданным:

Причем его модуль будет равен площади параллелограмма, посторенного на векторах и. Данный вектор понадобится нам для вычисления расстояния от точки до прямой. Как же нам считать векторное произведение векторов и, если их координаты заданы? На помощь к нам опять приходит определитель третьего порядка. Однако, прежде чем я перейду к алгоритму вычисления векторного произведения, я вынужден сделать небольшое лирическое отступление.

Данное отступление касается базисных векторов.

Схематично они изображены на рисунке:

Как ты думаешь, а почему они называется базисными? Дело в том, что :

Или на картинке:

Справедливость этой формулы очевидна, ведь:

Векторное произведение

Теперь я могу приступить ко введению векторного произведения:

Векторным произвдением двух векторов называется вектор, который вычисляется по следующему правилу:

Теперь давай приведем несколько примеров вычисления векторного произведения:

Пример 1 : Найти векторное произведение векторов:

Решение: составляю определитель:

И вычисляю его:

Теперь от записи через базисные векторы, я вернусь к привычной записи вектора:

Таким образом:

Теперь попробуй .

Готов? Проверяем:

И традиционно две задачи для контроля:

  1. Найти векторное произведение следующих векторов:
  2. Найти векторное произведение следующих векторов:

Ответы:

Смешанное произведение трех векторов

Последняя конструкция, которая мне понадобится - это смешанное произведение трех векторов. Оно, как и скалярное, является числом. Есть два способа его вычисления. - через определитель, - через смешанное произведение.

А именно, пусть у нас даны три вектора:

Тогда смешанное произведение трех векторов, обозначаемое через можно вычислить как:

1. - то есть смешанное произведение - это скалярное произведения вектора на векторное произведение двух других векторов

Например, смешанное произведение трех векторов равно:

Самостоятельно попробуй вычислить его через векторное произведение и убедись, что результаты совпадут!

И опять - два примера для самостоятельного решения:

Ответы:

Выбор системы координат

Ну вот, теперь у нас есть весь необходимый фундамент знаний, чтобы решать сложные стереометрические задачи по геометрии. Однако прежде чем приступать непосредственно к примерам и алгоритмам их решения, я считаю, что будет полезно остановиться еще вот на каком вопросе: как именно выбирать систему координат для той или иной фигуры. Ведь именно выбор взаимного расположения системы координат и фигуры в пространстве в конечном счете определит, насколько громоздкими будут вычисления.

Я напомню, что в этом разделе мы рассматриваем следующие фигуры:

  1. Прямоугольный параллелепипед
  2. Прямая призма (треугольная, шестиугольная…)
  3. Пирамида (треугольная, четырехугольная)
  4. Тетраэдр (одно и то же, что и треугольная пирамида)

Для прямоугольного параллелепипеда или куба я рекомендую тебе следующее построение:

То есть фигуру я буду помещать «в угол». Куб и параллелепипед - это очень хорошие фигуры. Для них ты всегда без труда можешь найти координаты его вершин. Например, если (как показано на рисунке)

то координаты вершин следующие:

Запоминать это, конечно, не нужно, однако помнить, как лучше располагать куб или прямоугольный параллелепипед - желательно.

Прямая призма

Призма - более вредная фигура. Располагать ее в пространстве можно по-разному. Однако мне наиболее приемлемым кажется следующий вариант:

Треугольная призма:

То есть одну из сторон треугольника мы целиком кладем на ось, причем одна из вершин совпадает с началом координат.

Шестиугольная призма:

То есть одна из вершин совпадает с началом координат, и одна из сторон лежит на оси.

Четырехугольная и шестиугольная пирамида:

Ситуация, аналогичная кубу: две стороны основания совмещаем с осями координат, одну из вершин совмещаем с началом координат. Единственной небольшой сложностью будет рассчитать координаты точки.

Для шестиугольной пирамиды - аналогично, как для шестиугольной призмы. Основная задача опять-таки будет в поиске координат вершины.

Тетраэдр (треугольная пирамида)

Ситуация очень похожа на ту, которую я привел для треугольной призмы: одна вершина совпадает с началом координат, одна сторона лежит на координатной оси.

Ну что, теперь мы с тобой, наконец, близки к тому, чтобы приступить к решению задач. Из сказанного мною в самом начале статьи, ты мог сделать вот какой вывод: большинство задач C2 делятся на 2 категории: задачи на угол и задачи на расстояние. Вначале мы с тобой рассмотрим задачи на нахождение угла. Они в свою очередь делятся на следующие категории (по мере увеличения сложности):

Задачи на поиск углов

  1. Нахождение угла между двумя прямыми
  2. Нахождение угла между двумя плоскостями

Давай будем рассматривать эти задачи последовательно: начнем с нахождения угла между двумя прямыми. Ну-ка вспомни, а не решали ли мы с тобой подобные примеры раньше? Припоминаешь, ведь у нас уже было что-то подобное… Мы искали угол между двумя векторами. Я напомню тебе, если даны два вектора: и, то угол между ними находится из соотношения:

Теперь же у нас стоит цель - нахождение угла между двумя прямыми. Давай обратимся к «плоской картинке»:

Сколько у нас получилось углов при пересечении двух прямых? Аж штуки. Правда не равных из них только два, другие же являются вертикальными к ним (а потому с ними совпадают). Так какой же угол нам считать углом между двумя прямыми: или? Здесь правило такое: угол между двумя прямыми всегда не более чем градусов . То есть из двух углов мы всегда будем выбирать угол с наименьшей градусной мерой. То есть на данной картинке угол между двумя прямыми равен. Чтобы каждый раз не заморачиваться с поиском наименьшего из двух углов, хитрые математики предложили использовать модуль. Таким образом угол между двумя прямыми определяется по формуле:

У тебя, как у внимательного читателя, должен был возникнуть вопрос: а откуда, собственно, мы возьмем эти самые числа, которые нам нужны для вычисления косинуса угла? Ответ: мы будем брать их из направляющих векторов прямых! Таким образом, алгоритм нахождения угла между двумя прямыми выглядит следующим образом:

  1. Применяем формулу 1.

Или более подробно:

  1. Ищем координаты направляющего вектора первой прямой
  2. Ищем координаты направляющего вектора второй прямой
  3. Вычисляем модуль их скалярного произведения
  4. Ищем длину первого вектора
  5. Ищем длину второго вектора
  6. Умножаем результаты пункта 4 на результаты пункта 5
  7. Делим результат пункта 3 на результат пункта 6. Получаем косинус угла между прямыми
  8. Если данный результат позволяет в точности вычислить угол, ищем его
  9. Иначе пишем через арккосинус

Ну что, теперь самое время перейти к задачам: решение первых двух я продемонстрирую подробно, решение еще одной я представлю в кратком виде, а к последним двум задачам я лишь дам ответы, все выкладки к ним ты должен провести сам.

Задачи:

1. В пра-виль-ном тет-ра-эд-ре най-ди-те угол между вы-со-той тет-ра-эд-ра и ме-ди-а-ной бо-ко-вой грани.

2. В пра-виль-ной ше-сти-уголь-ной пи-ра-ми-де сто-ро-ны ос-но-ва-ния ко-то-рой равны, а бо-ко-вые ребра равны, най-ди-те угол между пря-мы-ми и.

3. Длины всех ребер пра-виль-ной че-ты-рех-уголь-ной пи-ра-ми-ды равны между собой. Най-ди-те угол между пря-мы-ми и если от-ре-зок — вы-со-та дан-ной пи-ра-ми-ды, точка — се-ре-ди-на ее бо-ко-во-го ребра

4. На ребре куба от-ме-че-на точка так, что Най-ди-те угол между пря-мы-ми и

5. Точка — се-ре-ди-на ребра куба Най-ди-те угол между пря-мы-ми и.

Я неслучайно расположил задачи в таком порядке. Пока ты еще не успел начать ориентироваться в методе координат, я сам разберу наиболее «проблемные» фигуры, а тебе предоставлю разобраться с простейшим кубом! Постепенно тебе предстоит научиться работать со всеми фигурами, сложность задач я буду увеличивать от теме к теме.

Приступаем к решению задач:

1. Рисуем тетраэдр, помещаем его в систему координат так, как я предлагал ранее. Поскольку тетраэд правильный - то все его грани (включая основание) - правильные треугольники. Поскольку нам не дана длина стороны, то я могу принять ее равной. Я думаю, ты понимаешь, что угол на самом деле не будет зависеть от того, насколько наш тетраэдр будет «растянут»?. Также проведу в тетраэдре высоту и медиану. Попутно я нарисую его основание (оно нам тоже пригодится).

Мне нужно найти угол между и. Что нам известно? Нам известна только координата точки. Значит, надо найти еще координаты точек. Теперь думаем: точка - это точка пересечения высот (или биссектрисс или медиан) треугольника. А точка - это приподнятая точка. Точка же - это середина отрезка. Тогда окончательно нам надо найти: координаты точек: .

Начнем с самого простого: координаты точки. Смотри на рисунок: Ясно, что аппликата точки равна нулю (точка лежит на плоскости). Её ордината равна (так как - медиана). Сложнее найти ее абсциссу. Однако это легко делается на основании теоремы Пифагора: Рассмотрим треугольник. Его гипотенуза равна, а один из катетов равен Тогда:

Окончательно имеем: .

Теперь найдем координаты точки. Ясно, что ее аппликата опять равна нулю, а ее ордината такая же, как у точки, то есть. Найдем ее абсциссу. Это делается достаточно трививально, если помнить, что высоты равностороннего треугольника точкой пересечения делятся в пропорции , считая от вершины. Так как: , то искомая абсцисса точки, равная длине отрезка, равна: . Таким образом, координаты точки равны:

Найдем координаты точки. Ясно, что ее абсцисса и ордината совпадают с абсциссой и ординатой точки. А аппликата равна длине отрезка. - это один из катетов треугольника. Гипотенуза треугольника - это отрезок - катет. Он ищется из соображений, которые я выделил жирным шрифтом:

Точка - это середина отрезка. Тогда нам нужно вспомнить формулу координат середины отрезка:

Ну все, теперь мы можем искать координаты направляющих векторов:

Ну что, все готово: подставляем все данные в формулу:

Таким образом,

Ответ:

Тебя не должны пугать такие «страшные» ответы: для задач С2 это обычная практика. Я бы скорее удивился «красивому» ответу в этой части. Также, как ты заметил, я практически не прибегал ни к чему, кроме как к теореме Пифагора и свойству высот равностороннего треугольника. То есть для решения стереометрической задачи я использовал самый минимум стереометрии. Выигрыш в этом частично «гасится» достаточно громоздкими вычислениями. Зато они достаточно алгоритмичны!

2. Изобразим правильную шестиугольную пирамиду вместе с системой координат, а также ее основание:

Нам нужно найти угол между прямыми и. Таким образом, наша задача сводится к поиску координат точек: . Координаты последних трех мы найдем по маленькому рисунку, а коодинату вершины найдем через координату точки. Работы навалом, но надо к ней приступать!

a) Координата: ясно, что ее аппликата и ордината равны нулю. Найдем абсциссу. Для этого рассмотрим прямоугольный треугольник. Увы, в нем нам известна только гипотенуза, которая равна. Катет мы будем стараться отыскать (ибо ясно, что удвоенная длина катета даст нам абсциссу точки). Как же нам ее искать? Давай вспомним, что за фигура у нас лежит в основании пирамиды? Это правильный шестиугольник. А что это значит? Это значит, что у него все стороны и все углы равны. Надо бы найти один такой угол. Есть идеи? Идей масса, но есть формула:

Сумма углов правильного n-угольника равна .

Таким образом, сумма углов правильного шестиугольника равна градусов. Тогда каждый из углов равен:

Вновь смотрим на картинку. Ясно, что отрезок - биссектрисса угла. Тогда угол равен градусам. Тогда:

Тогда, откуда.

Таким образом, имеет координаты

b) Теперь легко найдем координату точки: .

c) Найдем координаты точки. Так как ее абсцисса совпадает с длиной отрезка то она равна. Найти ординату тоже не очень сложно: если мы соединим точки и а точку пересечения прямой обозначим, скажем за. (сделай сам несложное построение). Тогда Таким образом, ордината точки B равна сумме длин отрезков. Вновь обратимся к треугольнику. Тогда

Тогда так как Тогда точка имеет координаты

d) Теперь найдем координаты точки. Рассмотри прямоугольник и докажи, что Таким образом, координаты точки:

e) Осталось найти координаты вершины. Ясно, что ее абсцисса и ордината совпадает с абсциссой и ординатой точки. Найдем аппликату. Так как, то. Рассмотрим прямоугольный треугольник. По условию задачи боковое ребро. Это гипотенуза моего треугольника. Тогда высота пирамиды - катет.

Тогда точка имеет координаты:

Ну все, у меня есть координаты всех интересующих меня точек. Ищу координаты направляющих векторов прямых:

Ищем угол между этими векторами:

Ответ:

Опять-таки, при решении этой задачи я не использовал никаких изошренных приемов, кроме формулы суммы углов правильного n-угольника, а также определения косинуса и синуса прямоугольного треугольника.

3. Поскольку нам опять не даны длины ребер в пирамиде, то я буду считать их равными единице. Таким образом, поскольку ВСЕ ребра, а не только боковые, равны между собой, то в основании пирамиды и меня лежит квадрат, а боковые грани - правильные треугольники. Изобразим такую пирамиду, а также ее основание на плоскости, отметив все данные, приведенные в тексте задачи:

Ищем угол между и. Я буду делать очень краткие выкладки, когда буду заниматься поиском координат точек. Тебе необходимо будет «расшифровать» их:

b) - середина отрезка. Её координаты:

c) Длину отрезка я найду по теореме Пифагора в треугольнике. Найду по теореме Пифагора в треугольнике.

Координаты:

d) - середина отрезка. Ее координаты равны

e) Координаты вектора

f) Координаты вектора

g) Ищем угол:

Куб - простейшая фигура. Я уверен, что с ней ты разберешься самостоятельно. Ответы к задачам 4 и 5 следующие:

Нахождение угла между прямой и плоскостью

Ну что, время простых задачек окончено! Теперь примеры будут еще сложнее. Для отыскания угла между прямой и плоскостью мы будем поступать следующим образом:

  1. По трем точкам строим уравнение плоскости
    ,
    используя определитель третьего порядка.
  2. По двум точкам ищем координаты направляющего вектора прямой:
  3. Применяем формулу для вычисления угла между прямой и плоскостью:

Как видишь, эта формула очень похожа на ту, что мы применяли для поиска углов между двумя прямыми. Структура правой части просто одинакова, а слева мы теперь ищем синус, а не косинус, как раньше. Ну и добавилось одно противное действие - поиск уравнения плоскости.

Не будем откладывать в долгий ящик решение примеров:

1. Ос-но-ва-ни-ем пря-мой приз-мы яв-ля-ет-ся рав-но-бед-рен-ный тре-уголь-ник Вы-со-та приз-мы равна. Най-ди-те угол между пря-мой и плос-ко-стью

2. В пря-мо-уголь-ном па-рал-ле-ле-пи-пе-де из-вест-ны Най-ди-те угол между пря-мой и плос-ко-стью

3. В пра-виль-ной ше-сти-уголь-ный приз-ме все ребра равны. Най-ди-те угол между пря-мой и плос-ко-стью.

4. В пра-виль-ной тре-уголь-ной пи-ра-ми-де с ос-но-ва-ни-ем из-вест-ны ребра Най-ди-те угол, об-ра-зо-ван-ный плос-ко-стью ос-но-ва-ния и пря-мой, про-хо-дя-щей через се-ре-ди-ны ребер и

5. Длины всех ребер пра-виль-ной четырёхуголь-ной пи-ра-ми-ды с вер-ши-ной равны между собой. Най-ди-те угол между пря-мой и плос-ко-стью, если точка — се-ре-ди-на бо-ко-во-го ребра пи-ра-ми-ды.

Опять я решу первые две задачи подробно, третью - кратко, а последние две оставляю тебе для самостоятельного решения. К тому же тебе уже приходилось иметь дело с треугольной и четырехугольной пирамидами, а вот с призмами - пока что нет.

Решения:

1. Изобразим призму, а также ее основание. Совместим ее с системой координат и отметим все данные, которые даны в условии задачи:

Извиняюсь за некоторое несоблюдение пропорций, но для решения задачи это, по сути, не так важно. Плоскость - это просто «задняя стенка» моей призмы. Достаточно просто догадаться, что уравнение такой плоскости имеет вид:

Однако, это можно показать и непосредственно:

Выберем произвольные три точки на этой плоскости: например, .

Составим уравнение плоскости:

Упражнение тебе: самостоятельно вычислить этот определитель. У тебя получилось? Тогда уравение плоскости имеет вид:

Или просто

Таким образом,

Для решения примера мне нужно найти координаты направляющего вектора прямой. Так как точка cовпала с началом координат, то координаты вектора просто совпадут с координатами точки Для этого найдем вначале координаты точки.

Для этого рассмотрим треугольник. Проведем высоту (она же - медиана и биссектрисса) из вершины. Так как, то ордината точки равна. Для того, чтобы найти абсциссу этой точки, нам нужно вычислить длину отрезка. По теореме Пифагора имеем:

Тогда точка имеет координаты:

Точка - это «приподнятая» на точка:

Тогда координаты вектора:

Ответ:

Как видишь, ничего принципиально сложного при решении таких задач нет. На самом деле процесс еще немного упрощает «прямота» такой фигуры, как призма. Теперь давай перейдем к следующему примеру:

2. Рисуем параллелепипед, проводим в нем плоскость и прямую, а также отдельно вычерчиваем его нижнее основание:

Вначале найдем уравнение плоскости: Координаты трех точек, лежащих в ней:

(первые две координаты получены очевидным способом, а последнюю координату ты легко найдешь по картинке из точки). Тогда составляем уравнение плоскости:

Вычисляем:

Ищем координаты направляющего вектора: Ясно, что его координаты совпадают с координатами точки, не правда ли? Как найти координаты? Это же координаты точки, приподнятые по оси аппликат на единицу! . Тогда Ищем искомый угол:

Ответ:

3. Рисуем правильную шестиугольную пирамиду, а затем проводим в ней плоскость и прямую.

Тут даже плоскость нарисовать проблемно, не говоря уже о решении этой задачи, однако методу координат все равно! Именно в его универсальности и заключается его основное преимущество!

Плоскость проходит через три точки: . Ищем их координаты:

1) . Сам выведи координаты для последних двух точек. Тебе пригодится для этого решение задачи с шестиугольной пирамидой!

2) Строим уравнение плоскости:

Ищем координаты вектора: . (снова смотри задачу с треугольной пирамидой!)

3) Ищем угол:

Ответ:

Как видишь, ничего сверхъестественно сложного в этих задачах нет. Нужно лишь быть очень внимательным с корнями. К последним двум задачам я дам лишь ответы:

Как ты мог убедиться, техника решения задач везде одинаковая: основная задача найти координаты вершин и подставить их в некие формулы. Нам осталось рассмотреть еще один класс задач на вычисление углов, а именно:

Вычисление углов между двумя плоскостями

Алгоритм решения будет таков:

  1. По трем точкам ищем уравнение первой плоскости:
  2. По другим трем точкам ищем уравнение второй плоскости:
  3. Применяем формулу:

Как видишь, формула очень похожа на две предыдущие, при помощи которых мы искали углы между прямыми и между прямой и плоскостью. Так что запомнить эту тебе не составит особого труда. Сразу переходим к разбору задач:

1. Сто-ро-на ос-но-ва-ния пра-виль-ной тре-уголь-ной приз-мы равна, а диа-го-наль бо-ко-вой грани равна. Най-ди-те угол между плос-ко-стью и плос-ко-стью ос-но-ва-ния приз-мы.

2. В пра-виль-ной че-ты-рех-уголь-ной пи-ра-ми-де, все ребра ко-то-рой равны, най-ди-те синус угла между плос-ко-стью и плос-ко-стью, про-хо-дя-щей через точку пер-пен-ди-ку-ляр-но пря-мой.

3. В правильной че-ты-рех-уголь-ной призме сто-ро-ны ос-но-ва-ния равны, а бо-ко-вые ребра равны. На ребре от-ме-че-на точка так, что. Найдите угол между плос-ко-стя-ми и

4. В пра-виль-ной четырёхуголь-ной приз-ме сто-ро-ны ос-но-ва-ния равны, а бо-ко-вые рёбра равны. На ребре от-ме-че-на точка так, что Най-ди-те угол между плос-ко-стя-ми и.

5. В кубе най-ди-те ко-си-нус угла между плос-ко-стя-ми и

Решения задач:

1. Рисую правильную (в основании - равносторонний треугольник) треугольную призму и отмечаю на ней плоскости, которые фигурируют в условии задачи:

Нам нужно найти уравнения двух плоскостей: Уравнение основания получается тривиально: ты можешь составить соответствующий определитель по трем точкам, я же составлю уравнение сразу:

Теперь найдем уравнение Точка имеет координаты Точка - Так как - медиана и высота треугольника, то легко находится по теореме Пифагора в треугольнике. Тогда точка имеет координаты: Найдем аппликату точки Для этого рассмотрим прямоугольный треугольник

Тогда получаем вот такие координаты: Cоставляем уравнение плоскости.

Вычисляем угол между плоскостями:

Ответ:

2. Делаем рисунок:

Самое сложное - это понять, что это такая за таинственная плоскость, проходящая через точку перпендикулярно. Ну что же, главное, это что? Главное - это внимательность! В самом деле, прямая перпендикулярна. Прямая также перпендикулярна. Тогда плоскость, проходящая через эти две прямые, будет перпендикулярна прямой, и, кстати, проходить через точку. Эта плоскость также проходит через вершину пирамиды. Тогда искомая плоскость - А плоскость нам уже дана. Ищем координаты точек.

Координату точки найдем через точку. Из маленького рисунка легко вывести, что координаты у точки будут такие: Что теперь осталось найти, чтобы найти координаты вершины пирамиды? Еще нужно вычислить ее высоту. Это делается при помощи все той же теоремы Пифагора: вначале докажи, что (тривиально из маленьких треугольничков, образующих квадрат в основании). Так как по условию, то имеем:

Теперь все готово: координаты вершины:

Составляем уравнение плоскости:

Ты уже спец в вычислении определителей. Без труда ты получишь:

Или иначе (если домножим обе части на корень из двух)

Теперь найдем уравнение плоскости:

(ты ведь не забыл, как мы получаем уравнение плоскости, правда? Если ты не понял, откуда взялась эта минус единица, то вернись к определению уравнения плоскости! Просто всегда до этого оказывалось так, что моей плоскости принадлежало начало координат!)

Вычисляем определитель:

(Ты можешь заметить, что уравнение плоскости совпало с уравнением прямой, проходящей через точки и! Подумай, почему!)

Теперь вычисляем угол:

Нам же нужно найти синус:

Ответ:

3. Каверзный вопрос: а что такое прямоугольная призма, как ты думаешь? Это же всего-то навсего хорошо известный тебе параллелепипед! Сразу же делаем чертеж! Можно даже отдельно не изображать основание, пользы от него здесь немного:

Плоскость, как мы уже раньше заметили, записывается в виде уравнения:

Теперь составляем плоскость

Cразу же составляем уравнение плоскости:

Ищем угол:

Теперь ответы к последним двум задачам:

Ну что же, теперь самое время немного передохнуть, ведь мы с тобой молодцы и проделали огромную работу!

Координаты и векторы. Продвинутый уровень

В этой статье мы обсудим с тобой еще один класс задач, которые можно решать при помощи метода координат: задачи на вычисление расстояния. А именно, мы с тобой рассмотрим следующие случаи:

  1. Вычисление расстояния между скрещивающимися прямыми.

Я упорядочил данные задания по мере увеличения их сложности. Наиболее просто оказывается найти расстояние от точки до плоскости , а самое сложное - найти расстояние между скрещивающимися прямыми . Хотя, конечно, нет ничего невозможного! Давай не будем откладывать в долгий ящик и сразу приступим к рассмотрению первого класса задач:

Вычисление расстояния от точки до плоскости

Что нам потребуется для решения этой задачи?

1. Координаты точки

Итак, как только мы получим все необходимые данные, то применяем формулу:

Как мы строим уравнение плоскости тебе уже должно быть известно из предыдущих задач, которые я разбирал в прошлой части. Давай сразу приступим к задачам. Схема следующая: 1, 2 -я помогаю тебе решать, причем довольно подробно, 3, 4 - только ответ, решение ты проводишь сам и сравниваешь. Начали!

Задачи:

1. Дан куб. Длина ребра куба равна. Най-ди-те рас-сто-я-ние от се-ре-ди-ны от-рез-ка до плос-ко-сти

2. Дана пра-виль-ная че-ты-рех-уголь-ная пи-ра-ми-да Бо-ко-вое ребро сто-ро-на ос-но-ва-ния равна. Най-ди-те рас-сто-я-ние от точки до плос-ко-сти где — се-ре-ди-на ребра.

3. В пра-виль-ной тре-уголь-ной пи-ра-ми-де с ос-но-ва-ни-ем бо-ко-вое ребро равно, а сто-ро-на ос-но-ва-ния равна. Най-ди-те рас-сто-я-ние от вер-ши-ны до плос-ко-сти.

4. В пра-виль-ной ше-сти-уголь-ной приз-ме все рёбра равны. Най-ди-те рас-сто-я-ние от точки до плос-ко-сти.

Решения:

1. Рисуем кубик с единичными ребрами, строим отрезок и плоскость, середину отрезка обозначим буквой

.

Вначале давай начнем с легкого: найдем координаты точки. Так как то (вспомни координаты середины отрезка!)

Теперь составляем уравнение плоскости по трем точкам

\[\left| {\begin{array}{*{20}{c}}x&0&1\\y&1&0\\z&1&1\end{array}} \right| = 0\]

Теперь я могу приступать к поиску расстояния:

2. Вновь начинаем с чертежа, на котором отмечаем все данные!

Для пирамиды было бы полезно отдельно рисовать ее основание.

Даже тот факт, что я рисую как курица лапой, не помешает нам с легкостью решить эту задачу!

Теперь легко найти координаты точки

Так как координаты точки, то

2. Так как координаты точки а - середина отрезка, то

Без проблем найдем и координаты еще двух точек на плоскости Составляем уравнение плоскости и упростим его:

\[\left| {\left| {\begin{array}{*{20}{c}}x&1&{\frac{3}{2}}\\y&0&{\frac{3}{2}}\\z&0&{\frac{{\sqrt 3 }}{2}}\end{array}} \right|} \right| = 0\]

Так как точка имеет координаты: , то вычисляем расстояние:

Ответ (очень редкий!):

Ну что, разобрался? Мне кажется, что здесь все так же технично, как и в тех примерах, что мы рассматривали с тобой в предыдущей части. Так что я уверен, что если ты овладел тем материалом, то тебе не составит труда решить оставшиеся две задачи. Я лишь приведу ответы:

Вычисление расстояния от прямой до плоскости

На самом деле, здесь нет ничего нового. Как могут располагаться прямая и плоскость друг относительно друга? У них есть всего возможности: пересечься, или прямая параллельна плоскости. Как ты думаешь, чем равно расстояние от прямой до плоскости, с которой данная прямая пересекается? Мне кажется, что тут ясно, что такое расстояние равно нулю. Неинтересный случай.

Второй случай хитрее: тут уже расстояние ненулевое. Однако, так как прямая параллельна плоскости, то каждая точка прямой равноудалена от этой плоскости:

Таким образом:

А это значит, что моя задача свелась к предыдущей: ищем координаты любой точки на прямой, ищем уравнение плоскости, вычисляем расстояние от точки до плоскости. На самом деле, такие задачи в ЕГЭ встречаются крайне редко. Мне удалось найти лишь одну задачу, и то данные в ней были такими, что метод координат к ней был не очень-то и применим!

Теперь перейдем к другому, гораздо более важному классу задач:

Вычисление расстояния точки до прямой

Что нам потребуется?

1. Координаты точки, от которой мы ищем расстояние:

2. Координаты любой точки, лежащей на прямой

3. Координаты направляющего вектора прямой

Какую применяем формулу?

Что означает знаменатель данной дроби тебе и так должно быть ясно: это длина направляющего вектора прямой. Здесь очень хитрый числитель! Выражение означает модуль (длина) векторного произведения векторов и Как вычислять векторное произведение, мы с тобой изучали в предыдущей части работы. Освежи свои знания, нам они сейчас очень пригодятся!

Таким образом, алгоритм решения задач будет следующий:

1. Ищем координаты точки, от которой мы ищем расстояние:

2. Ищем координаты любой точки на прямой, до которой мы ищем расстояние:

3. Строим вектор

4. Строим направляющий вектор прямой

5. Вычисляем векторное произведение

6. Ищем длину полученного вектора:

7. Вычисляем расстояние:

Работы у нас много, а примеры будут достаточно сложными! Так что теперь сосредоточь все внимание!

1. Дана пра-виль-ная тре-уголь-ная пи-ра-ми-да с вер-ши-ной. Сто-ро-на ос-но-ва-ния пи-ра-ми-ды равна, вы-со-та равна. Най-ди-те рас-сто-я-ние от се-ре-ди-ны бо-ко-во-го ребра до пря-мой, где точки и — се-ре-ди-ны ребер и со-от-вет-ствен-но.

2. Длины ребер и пря-мо-уголь-но-го па-рал-ле-ле-пи-пе-да равны со-от-вет-ствен-но и Най-ди-те рас-сто-я-ние от вер-ши-ны до пря-мой

3. В пра-виль-ной ше-сти-уголь-ной приз-ме все ребра ко-то-рой равны най-ди-те рас-сто-я-ние от точки до пря-мой

Решения:

1. Делаем аккуратный чертеж, на котором отмечаем все данные:

Работы у нас с тобой уйма! Я вначале бы хотел описать словами, что мы будем искать и в каком порядке:

1. Координаты точек и

2. Координаты точки

3. Координаты точек и

4. Координаты векторов и

5. Их векторное произведение

6. Длину вектора

7. Длину векторного произведения

8. Расстояние от до

Ну что же, работы нам предстоит немало! Принимаемся за нее, засучив рукава!

1. Чтобы найти координаты высоты пирамиды, нам нужно знать координаты точки Её аппликата равна нулю, а ордината равна Абсцисса ее равна длине отрезка Так как - высота равностороннего треугольника, то она делится в отношении, считая от вершины, отсюда. Окончательно, получили координаты:

Координаты точки

2. - середина отрезка

3. - середина отрезка

Середина отрезка

4.Координаты

Координаты вектора

5. Вычисляем векторное произведение:

6. Длина вектора: проще всего заменить, что отрезок - средняя линия треугольника, а значит, он равен половине основания. Так что.

7. Считаем длину векторного произведения:

8. Наконец, находим расстояние:

Уф, ну все! Честно тебе скажу: решение этой задачи традиционными методами (через построения), было бы намного быстрее. Зато здесь я все свел к готовому алгоритму! Я так думаю, что алгоритм решения тебе ясен? Поэтому попрошу тебя решить оставшиеся две задачи самостоятельно. Сравним ответы?

Опять-таки повторюсь: эти задачи проще (быстрее) решать через построения, а не прибегая к координатному методу. Я продемонстрировал такой способ решения лишь затем, чтобы показать тебе универсальный метод, который позволяет «ничего не достраивать».

Наконец, рассмотрим последний класс задач:

Вычисление расстояния между скрещивающимися прямыми

Здесь алгоритм решения задач будет схож с предыдущим. Что у нас есть:

3. Любой вектор, соединяющий точки первой и второй прямой:

Как мы ищем расстояние между прямыми?

Формула следующая:

Числитель - это модуль смешанного произведения (мы его вводили в предыдущей части), а знаменатель - как и в предыдущей формуле (модуль векторного произведения направляющих векторов прямых, расстояние между которыми мы с тобой ищем).

Я напомню тебе, что

тогда формулу для расстояния можно переписать в виде :

Этакий определитель делить на определитель! Хотя, если честно, мне здесь совсем не до шуток! Данная формула, на самом деле, очень громоздка и приводит к достаточно сложным вычислениям. На твоем месте я бы прибегал к ней только в самом крайнем случае!

Давай попробуем решить несколько задач, используя изложенный выше метод:

1. В пра-виль-ной тре-уголь-ной приз-ме, все рёбра ко-то-рой равны, най-ди-те рас-сто-я-ние между пря-мы-ми и.

2. Дана пра-виль-ная тре-уголь-ная приз-ма все рёбра ос-но-ва-ния ко-то-рой равны Се-че-ние, про-хо-дя-щее через бо-ко-вое ребро и се-ре-ди-ну ребра яв-ля-ет-ся квад-ра-том. Най-ди-те рас-сто-я-ние между пря-мы-ми и

Первую решаю я, а опираясь на нее, вторую решаешь ты!

1. Рисую призму и отмечаю прямые и

Координаты точки С: тогда

Координаты точки

Координаты вектора

Координаты точки

Координаты вектора

Координаты вектора

\[\left({B,\overrightarrow {A{A_1}} \overrightarrow {B{C_1}} } \right) = \left| {\begin{array}{*{20}{l}}{\begin{array}{*{20}{c}}0&1&0\end{array}}\\{\begin{array}{*{20}{c}}0&0&1\end{array}}\\{\begin{array}{*{20}{c}}{\frac{{\sqrt 3 }}{2}}&{ - \frac{1}{2}}&1\end{array}}\end{array}} \right| = \frac{{\sqrt 3 }}{2}\]

Считаем векторное произведение между векторами и

\[\overrightarrow {A{A_1}} \cdot \overrightarrow {B{C_1}} = \left| \begin{array}{l}\begin{array}{*{20}{c}}{\overrightarrow i }&{\overrightarrow j }&{\overrightarrow k }\end{array}\\\begin{array}{*{20}{c}}0&0&1\end{array}\\\begin{array}{*{20}{c}}{\frac{{\sqrt 3 }}{2}}&{ - \frac{1}{2}}&1\end{array}\end{array} \right| - \frac{{\sqrt 3 }}{2}\overrightarrow k + \frac{1}{2}\overrightarrow i \]

Теперь считаем его длину:

Ответ:

Теперь постарайся аккуратно выполнить вторую задачу. Ответом на нее будет: .

Координаты и векторы. Краткое описание и основные формулы

Вектор - направленный отрезок. - начало вектора, -конец вектора.
Вектор обозначается или.

Абсолютная величина вектора - длина отрезка, изображающего вектор. Обозначается, как.

Координаты вектора:

,
где - концы вектора \displaystyle a .

Сумма векторов: .

Произведение векторов:

Скалярное произведение векторов:

13.Угол между плоскостями, расстояние от точки до плоскости.

Пусть плоскости α и β пересекаются по прямой с.
Угол между плоскостями - это угол между перпендикулярами к линии их пересечения, проведенными в этих плоскостях .

Другими словами, в плоскости α мы провели прямую а, перпендикулярную с. В плоскости β - прямую b, также перпендикулярную с. Угол между плоскостями α и β равен углу между прямыми а и b.

Заметим, что при пересечении двух плоскостей вообще-то образуются четыре угла. Видите их на рисунке? В качестве угла между плоскостями мы берем острый угол.

Если угол между плоскостями равен 90 градусов, то плоскости перпендикулярны ,

Это определение перпендикулярности плоскостей. Решая задачи по стереометрии, мы используем также признак перпендикулярности плоскостей :

Если плоскость α проходит через перпендикуляр к плоскости β, то плоскости α и β перпендикулярны .

расстояние от точки до плоскости

Рассмотрим точку T, заданную своими координатами:

T = (x 0 , y 0 , z 0)

Также рассмотрим плоскость α, заданную уравнением:

Ax + By + Cz + D = 0

Тогда расстояние L от точки T до плоскости α можно считать по формуле:

Другими словами, мы подставляем координаты точки в уравнение плоскости, а затем делим это уравнение на длину вектора-нормали n к плоскости:

Полученное число и есть расстояние. Давайте посмотрим, как эта теорема работает на практике.


Мы уже выводили параметические уравнения прямой на плоскости, давайте получим параметрические уравнения прямой, которая задана в прямоугольной системе координат в трехмерном пространстве.

Пусть в трехмерном пространстве зафиксирована прямоугольная система координат Oxyz . Зададим в ней прямую a (смотрите раздел способы задания прямой в пространстве), указав направляющий вектор прямой и координаты некоторой точки прямой . От этих данных будем отталкиваться при составлении параметрических уравнений прямой в пространстве.

Пусть - произвольная точка трехмерного пространства. Если вычесть из координат точки М соответствующие координаты точки М 1 , то мы получим координаты вектора (смотрите статью нахождение координат вектора по координатам точек его конца и начала), то есть, .

Очевидно, что множество точек определяет прямую а тогда и только тогда, когда векторы и коллинеарны.

Запишем необходимое и достаточное условие коллинеарности векторов и : , где - некоторое действительное число. Полученное уравнение называется векторно-параметрическим уравнением прямой в прямоугольной системе координат Oxyz в трехмерном пространстве. Векторно-параметрическое уравнение прямой в координатной форме имеет вид и представляет собой параметрические уравнения прямой a . Название "параметрические" не случайно, так как координаты всех точек прямой задаются с помощью параметра .

Приведем пример параметрических уравнений прямой в прямоугольной системе координат Oxyz в пространстве: . Здесь


15.Угол между прямой и плоскостью. Точка пересечения прямой с плоскостью.

Всякое уравнение первой степени относительно координат x, y, z

Ax + By + Cz +D = 0 (3.1)

задает плоскость, и наоборот: всякая плоскость может быть представлена уравнением (3.1), которое называется уравнением плоскости .

Вектор n (A, B, C), ортогональный плоскости, называется нормальным вектором плоскости. В уравнении (3.1) коэффициенты A, B, C одновременно не равны 0.

Особые случаи уравнения (3.1):

1. D = 0, Ax+By+Cz = 0 - плоскость проходит через начало координат.

2. C = 0, Ax+By+D = 0 - плоскость параллельна оси Oz.

3. C = D = 0, Ax +By = 0 - плоскость проходит через ось Oz.

4. B = C = 0, Ax + D = 0 - плоскость параллельна плоскости Oyz.

Уравнения координатных плоскостей: x = 0, y = 0, z = 0.

Прямая в пространстве может быть задана:

1) как линия пересечения двух плоскостей,т.е. системой уравнений:

A 1 x + B 1 y + C 1 z + D 1 = 0, A 2 x + B 2 y + C 2 z + D 2 = 0; (3.2)

2) двумя своими точками M 1 (x 1 , y 1 , z 1) и M 2 (x 2 , y 2 , z 2), тогда прямая, через них проходящая, задается уравнениями:

3) точкой M 1 (x 1 , y 1 , z 1), ей принадлежащей, и вектором a (m, n, р), ей коллинеарным. Тогда прямая определяется уравнениями:

. (3.4)

Уравнения (3.4) называются каноническими уравнениями прямой .

Векторa называется направляющим вектором прямой .

Параметрические уравнения прямой получим, приравняв каждое из отношений (3.4) параметру t:

x = x 1 +mt, y = y 1 + nt, z = z 1 + рt. (3.5)

Решая систему (3.2) как систему линейных уравнений относительно неизвестных x и y , приходим к уравнениям прямой в проекциях или к приведенным уравнениям прямой :

x = mz + a, y = nz + b. (3.6)

От уравнений (3.6) можно перейти к каноническим уравнениям, находя z из каждого уравнения и приравнивая полученные значения:

.

От общих уравнений (3.2) можно переходить к каноническим и другим способом, если найти какую-либо точку этой прямой и ее направляющий вектор n = [n 1 , n 2 ], где n 1 (A 1 , B 1 , C 1) и n 2 (A 2 , B 2 , C 2) - нормальные векторы заданных плоскостей. Если один из знаменателей m, n или р в уравнениях (3.4) окажется равным нулю, то числитель соответствующей дроби надо положить равным нулю, т.е. система

равносильна системе ; такая прямая перпендикулярна к оси Ох.

Система равносильна системе x = x 1 , y = y 1 ; прямая параллельна оси Oz.

Пример 1.15 . Cоставьте уравнение плоскости, зная, что точка А(1,-1,3) служит основанием перпендикуляра, проведенного из начала координат к этой плоскости.

Решение. По условию задачи вектор ОА (1,-1,3) является нормальным вектором плоскости, тогда ее уравнение можно записать в виде
x-y+3z+D=0. Подставив координаты точки А(1,-1,3), принадлежащей плоскости, найдем D: 1-(-1)+3×3+D = 0 Þ D = -11. Итак, x-y+3z-11=0.

Пример 1.16 . Составьте уравнение плоскости, проходящей через ось Оz и образующей с плоскостью 2x+y- z-7=0 угол 60 о.

Решение. Плоскость, проходящая через ось Oz, задается уравнением Ax+By=0, где А и В одновременно не обращаются в нуль. Пусть В не
равно 0, A/Bx+y=0. По формуле косинуса угла между двумя плоскостями

.

Решая квадратное уравнение 3m 2 + 8m - 3 = 0, находим его корни
m 1 = 1/3, m 2 = -3, откуда получаем две плоскости 1/3x+y = 0 и -3x+y = 0.

Пример 1.17. Составьте канонические уравнения прямой:
5x + y + z = 0, 2x + 3y - 2z + 5 = 0.

Решение. Канонические уравнения прямой имеют вид:

где m, n, р - координаты направляющего вектора прямой, x 1 , y 1 , z 1 - координаты какой-либо точки, принадлежащей прямой. Прямая задана как линия пересечения двух плоскостей. Чтобы найти точку, принадлежащую прямой, фиксируют одну из координат (проще всего положить, например, x=0) и полученную систему решают как систему линейных уравнений с двумя неизвестными. Итак, пусть x=0, тогда y + z = 0, 3y - 2z+ 5 = 0, откуда y=-1, z=1. Координаты точки М(x 1 , y 1 , z 1), принадлежащей данной прямой, мы нашли: M (0,-1,1). Направляющий вектор прямой легко найти, зная нормальные векторы исходных плоскостей n 1 (5,1,1) иn 2 (2,3,-2). Тогда

Канонические уравнения прямой имеют вид: x/(-5) = (y + 1)/12 =
= (z - 1)/13.

Пример 1.18 . В пучке, определяемом плоскостями 2х-у+5z-3=0 и х+у+2z+1=0, найти две перпендикулярные плоскости, одна из которых проходит через точку М(1,0,1).

Решение. Уравнение пучка, определяемого данными плоскостями, имеет вид u(2х-у+5z-3) + v(х+у+2z+1)=0, где u и v не обращаются в нуль одновременно. Перепишем уравнение пучка следующим образом:

(2u +v)x + (- u + v)y + (5u +2v)z - 3u + v = 0.

Для того, чтобы из пучка выделить плоскость, проходящую через точку М, подставим координаты точки М в уравнение пучка. Получим:

(2u+v)×1 + (-u + v)×0 + (5u + 2v)×1 -3u + v =0, или v = - u.

Тогда уравнение плоскости, содержащей M, найдем, подставив v = - u в уравнение пучка:

u(2x-y +5z - 3) - u (x + y +2z +1) = 0.

Т.к. u¹0 (иначе v=0, а это противоречит определению пучка), то имеем уравнение плоскости x-2y+3z-4=0. Вторая плоскость, принадлежащая пучку, должна быть ей перпендикулярна. Запишем условие ортогональности плоскостей:

(2u+ v)×1 + (v - u)×(-2) + (5u +2v)×3 = 0, или v = - 19/5u.

Значит, уравнение второй плоскости имеет вид:

u(2x -y+5z - 3) - 19/5 u(x + y +2z +1) = 0 или 9x +24y + 13z + 34 = 0

Пусть нужно найти уравнение плоскости, проходящей через три данные точки, не лежащие на одной прямой. Обозначая их радиусы-векторы через а текущий радиус-вектор через , мы легко получим искомое уравнение в векторной форме. В самом деле, векторы , должны быть компланарны (они все лежат в искомой плоскости). Следовательно, векторно-скалярное произведение этих векторов должно быть равно нулю:

Это и есть уравнение плоскости, проходящей через три данные точки , в векторной форме.

Переходя к координатам, получим уравнение в координатах:

Если бы три данные точки лежали на одной прямой, то векторы были бы коллинеарны. Поэтому соответствующие элементы двух последних строк определителя, стоящего в уравнении (18), были бы пропорциональны и определитель тождественно равен нулю. Следовательно, уравнение (18) обращалось бы в тождество при любых значениях х, у и z. Геометрически это значит, что через каждую точку пространства проходит плоскость, в которой лежат и три данные точки.

Замечание 1. Эту же задачу можно решить, не пользуясь векторами.

Обозначая координаты трех данных точек соответственно чрез напишем уравнение любой плоскости, проходящей через первую точку:

Чтобы получить уравнение искомой плоскости, нужно потребовать, чтобы уравнение (17) удовлетворялось координатами двух других точек:

Из уравнений (19) нужно определить отношения двух коэффициентов к третьему и внести найденные значения в уравнение (17).

Пример 1. Составить уравнение плоскости, проходящей через точки .

Уравнение плоскости, проходящей через первую из данных точек, будет:

Условия прохождения плоскости (17) через две другие точки и первую точку суть:

Складывая второе уравнение с первым, найдем:

Подставляя во второе уравнение, получим:

Подставляя в уравнение (17) вместо А, В, С соответственно 1, 5, -4 (числа, им пропорциональные), получим:

Пример 2. Составить уравнение плоскости, проходящей через точки (0, 0, 0), (1, 1, 1), (2, 2, 2).

Уравнение любой плоскости, проходящей через точку (0, 0, 0), будет]

Условия прохождения этой плоскости, через точки (1, 1, 1) и (2, 2, 2) суть:

Сокращая второе уравнение на 2, видим, что для определения двух неизвестных отношении имеет одно уравнение с

Отсюда получим . Подставляя теперь в уравнение плоскости вместо его значение, найдем:

Это и есть уравнение искомой плоскости; оно зависит от произвольных

количеств В, С (а именно, от отношения т. е. имеется бесчисленное множество плоскостей, проходящих через три данные точки (три данные точки лежат на одной прямой линии).

Замечание 2. Задача о проведении плоскости через три данные точки, не лежащие на одной прямой, легко решается в общем виде, если воспользоваться определителями. Действительно, так как в уравнениях (17) и (19) коэффициенты А, В, С не могут быть одновременно равны нулю, то, рассматривая эти уравнения как однородную систему с тремя неизвестными А, В, С, пишем необходимое и достаточное условие существования решения этой системы, отличного от нулевого (ч. 1, гл. VI, § 6):

Разложив этот определитель по элементам первой строки, получим уравнение первой степени относительно текущих координат , которому будут удовлетворять, в частности, координаты трех данных точек.

В этом последнем можно также убедиться и непосредственно, если подставить в уравнение, записанное с помощью определителя, координаты любой из данных точек вместо . В левой части получается определитель, у которого либо элементы первой строки нули, либо имеются две одинаковые строки. Таким образом, составленное уравнение представляет плоскость, проходящую через три данные точки.

Для того, чтобы через три какие- либо точки пространства можно было провести единственную плоскость, необходимо, чтобы эти точки не лежали на одной прямой.

Рассмотрим точки М 1 (x 1 , y 1 , z 1), M 2 (x 2 , y 2 , z 2), M 3 (x 3 , y 3 , z 3) в общей декартовой системе координат.

Для того, чтобы произвольная точка М(x, y, z) лежала в одной плоскости с точками М 1 , М 2 , М 3 необходимо, чтобы векторы были компланарны.

Определение 2.1.

Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не имеют общих точек.

Если две прямые a и b параллельны, то, как и в планиметрии, пишут a || b . В пространстве прямые могут быть размещены так, что они не пересекаются и не параллельны. Этот случай является особым для стереометрии.

Определение 2.2.

Прямые, которые не имеют общих точек и не параллельны, называются скрещивающимися.

Теорема 2.1.

Через точку вне данной прямой можно провести прямую, параллельную данной, и притом только одну.

Признак параллельности прямых
Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются. Через точку вне данной прямой можно пронести прямую, параллельную этой пряиой, и притом только одну. Это утверждение сводится к аксиоме о параллельных в плоскости. Теорема. Две прямые, параллельные третьей прямой, параллельны. Пусть прямые b и с параллельны прямой а. Падо доказать, что b || с. Случай, когда прямые а, b и слежат и одной плоскости, рассмотрен в планиметрии, его опускаем. Предположим, что а, b и с не лежит в одной плоскости. Но так как две параллельные прямые расположены в одной плоскости, то можно считать, что а и b расположены и плоскости , a b и с -- в плоскости (рис. 61). На прямой с отметим точку (любую) М и через прямую b и точку M проведем плоскость . Она, , пересекает по прямой l. Прямая l не пересекает плоскость , так как если l пересекала бы , то точка их пересечения должна лежать на а (а и l - в одной плоскости) и на b (b и l - в одной плоскости). Таким образом, одна точка пересечения l и должна лежать и на прямой а, и на прямой b, что невозможно: а || b. Следовательно, а || , l || а, l || b. Поскольку a и l лежат в одной плоскости, то l совпадает с прямой с (по аксиоме параллельности), а значит, с || b. Теорема доказана.

25.Признак параллельности прямой и плоскости

Теорема

Если прямая, не принадлежащая плоскости, параллельна какой-нибудь прямой в этой плоскости, то она параллельна и самой плоскости.



Доказательство

Пусть α - плоскость, a – не лежащая в ней прямая и a1 – прямая в плоскости α, параллельная прямой a. Проведем плоскость α1 через прямые a и a1. Плоскости α и α1 пересекаются по прямой a1. Если бы прямая a пересекала плоскость α, то точка пересечения принадлежала бы прямой a1. Но это невозможно, так как прямые a и a1 параллельны. Следовательно, прямая a не пересекает плоскостью α, а значит, параллельна плоскости α. Теорема доказана.

27.Существование плоскости, параллельной данной плоскости

Теорема

Через точку вне данной плоскости можно провести плоскость, параллельную данной, и притом только одну.

Доказательство

Проведем в данной плоскости α какие-нибудь две пересекающиеся прямые a и b. Через данную точку A проведем параллельные им прямые a1 и b1. Плоскость β, проходящая через прямые a1 и b1, по теореме о признаке параллельности плоскостей параллельна плоскости α.

Предположим, что через точку A проходит другая плоскость β1, тоже параллельная плоскости α. Отметим на плоскости β1 какую-нибудь точку С, не лежащую в плоскости β. Проведем плоскость γ через точки A, С и какую-нибудь точку B плоскости α. Эта плоскость пересечет плоскости α, β и β1 по прямым b, a и с. Прямые a и с не пересекают прямую b, так как не пересекают плоскость α. Следовательно, они параллельны прямой b. Но в плоскости γ через точку A может проходить только одна прямая, параллельная прямой b. что противоречит предположению. Теорема доказана.



28.Свойства параллельных плоскосте й

29.

Перпендикулярные прямые в пространстве. Две прямые в пространстве называются перпендикулярными, если угол между ними равен 90 градусов. c. m. k. k. m. c. k. Пересекающиеся. Скрещивающиеся.

Теорема 1 ПРИЗНАК ПЕРПЕНДИКУЛЯРНОСТИ ПРЯМОЙ И ПЛОСКОСТИ. Если прямая, пересекающая плоскость, перпендикулярна двум прямым в этой плоскости, проходящим через точку пересечения данной прямой и плоскости, то она перпендикулярна плоскости.
Доказательство:Пусть а прямая, перпендикулярная прямым b и c в плоскости . Тогда прямая а проходит через точкуА пересечения прямых b и c. Докажем, что прямая а перпендикулярна плоскости . Проведем произвольную прямую х через точкуА в плоскости и покажем, что она перпендикулярна прямой а. Проведем в плоскости произвольную прямую, не проходящую через точку А и пересекающую прямые b, c и х. Пусть точками пересечения будут В, С и Х. Отложим на прямой а от точки А в разные стороны равные отрезки АА 1 и АА 2 . Треугольник А 1 СА 2 равнобедренный, так как отрезок АС является высотой по условию теоремы и медианой по построению (АА 1 =АА 2).по той же причине треугольник А 1 ВА 2 тоже равнобедренный. Следовательно, треугольники А 1 ВС и А 2 ВС равны по трем сторонам. Из равенства треугольников А 1 ВС и А 2 ВС следует равенство углов А 1 ВХ и А 2 ВХ и, следовательно равенство треугольников А 1 ВХ и А 2 ВХ по двум сторонам и углу между ними. Из равенства сторон А 1 Х и А 2 Х этих треугольников заключаем, что треугольник А 1 ХА 2 равнобедренный. Поэтому его медиана ХА является также высотой. А это и значит, что прямая х перпендикулярна а. По определению прямаяа перпендикулярна плоскости . Теорема доказана.
Теорема 2 1-ое СВОЙСТВО ПЕРПЕНДИКУЛЯРНЫХ ПРЯМОЙ И ПЛОСКОСТИ. Если плоскость перпендикулярна одной из двух параллельных прямых, то она перпендикулярна и другой.
Доказательство: Пусть а 1 и а 2 - 2 параллельные прямые и плоскость, перпендикулярная прямой а 1 . Докажем, что эта плоскость перпендикулярна и прямой а 2 . Проведем через точку А 2 пересечения прямой а 2 с плоскостью произвольную прямую х 2 в плоскости . Проведем в плоскости через точку А 1 пересечения прямой а 1 с прямую х 1 , параллельную прямой х 2 . Так как прямая а 1 перпендикулярна плоскости , то прямые а 1 и x 1 перпендикулярны. А по теореме 1 параллельные им пересекающиеся прямые а 2 и х 2 тоже перпендикулярны. Таким образом, прямая а 2 перпендикулярна любой прямой х 2 в плоскости . А это (по определению)значит, что прямая а 2 перпендикулярна плоскости . Теорема доказана. Смотри также опорную задачу №2.
Теорема 3 2-ое СВОЙСТВО ПЕРПЕНДИКУЛЯРНЫХ ПРЯМОЙ И ПЛОСКОСТИ. Две прямые, перпендикулярные одной и той же плоскости, параллельны.
Доказательство: Пусть а и b - 2 прямые, перпендикулярные плоскости . Допутим, что прямые а и b не параллельны. Выберем на прямой b точкуС, не лежащую в плоскости . Проведем через точку С прямую b 1 , параллельную прямой а. Прямая b 1 перпендикулярна плоскости по теореме 2. Пусть В и В 1 - точки пересечения прямых b и b 1 с плоскостью . Тогда прямая ВВ 1 перпендикулярна пересекающимся прямым b и b 1 . А это невозможно. Мы пришли к противоречию. Теорема доказана.

33.Перпендикуляром , опущенным из данной точки данную плоскость, называется отрезок, соединяющий данную точку с точкой плоскости и лежащий на прямой, перпендикулярной плоскости. Конец этого отрезка, лежащий в плоскости, называется основанием перпендикуляра .
Наклонной , проведенной из данной точки к данной плоскости, называется любой отрезок, соединяющий данную точку с точкой плоскости, не являющийся перпендикуляром к плоскости. Конец отрезка, лежащий в плоскости, называется основанием наклонной . Отрезок, соединяющий основания перпендикуляра наклонной, проведенных из одной и той же точки, называется проекцией наклонной .

AB – перпендикуляр к плоскости α.
AC – наклонная, CB – проекция.

Формулировка теоремы

Если прямая, проведенная на плоскости через основание наклонной, перпендикулярна её проекции, то она перпендикулярна к наклонной.

Доказательство

Пусть AB - перпендикуляр к плоскости α, AC - наклонная и c - прямая в плоскости α, проходящая через точку C и перпендикулярная проекции BC . Проведем прямую CK параллельно прямой AB . Прямая CK перпендикулярна плоскости α (так как она параллельна AB ), а значит, и любой прямой этой плоскости, следовательно, CK перпендикулярна прямой c . Проведем через параллельные прямые AB и CK плоскость β (параллельные прямые определяют плоскость, причем только одну). Прямая c перпендикулярна двум пересекающимся прямым, лежащим в плоскости β, это BC по условию и CK по построению, значит, она перпендикулярна и любой прямой, принадлежащей этой плоскости, значит, перпендикулярна и прямой AC .

В рамках этого материала мы разберем, как найти уравнение плоскости, если мы знаем координаты трех различных ее точек, которые не лежат на одной прямой. Для этого нам понадобится вспомнить, что такое прямоугольная система координат в трехмерном пространстве. Для начала мы введем основной принцип данного уравнения и покажем, как именно использовать его при решении конкретных задач.

Yandex.RTB R-A-339285-1

Для начала нам необходимо вспомнить одну аксиому, которая звучит следующим образом:

Определение 1

Если три точки не совпадают друг с другом и не лежат на одной прямой, то в трехмерном пространстве через них проходит только одна плоскость.

Иными словами, если у нас есть три разных точки, координаты которых не совпадают и которые нельзя соединить прямой, то мы можем определить плоскость, проходящую через нее.

Допустим, у нас имеется прямоугольная система координат. Обозначим ее O x y z . В ней лежат три точки M с координатами M 1 (x 1 , y 1 , z 1) , M 2 (x 2 , y 2 , z 2) , M 3 (x 3 , y 3 , z 3) , которые нельзя соединить прямой линией. Исходя из этих условий, мы можем записать уравнение необходимой нам плоскости. Есть два подхода к решению этой задачи.

1. Первый подход использует общее уравнение плоскости. В буквенном виде оно записывается как A (x - x 1) + B (y - y 1) + C (z - z 1) = 0 . С его помощью можно задать в прямоугольной системе координат некую плоскость альфа, которая проходит через первую заданную точку M 1 (x 1 , y 1 , z 1) . У нас получается, что нормальный вектор плоскости α будет иметь координаты A , B , C .

Определение N

Зная координаты нормального вектора и координаты точки, через которую проходит плоскость, мы можем записать общее уравнение этой плоскости.

Из этого мы и будем исходить в дальнейшем.

Таким образом, согласно условиям задачи, мы имеем координаты искомой точки (даже трех), через которую проходит плоскость. Чтобы найти уравнение, нужно вычислить координаты ее нормального вектора. Обозначим его n → .

Вспомним правило: любой не равный нулю вектор данной плоскости является перпендикулярным нормальному вектору этой же плоскости. Тогда мы имеем, что n → будет перпендикулярным по отношению к векторам, составленным из исходных точек M 1 M 2 → и M 1 M 3 → . Тогда мы можем обозначить n → как векторное произведение вида M 1 M 2 → · M 1 M 3 → .

Поскольку M 1 M 2 → = (x 2 - x 1 , y 2 - y 1 , z 2 - z 1) а M 1 M 3 → = x 3 - x 1 , y 3 - y 1 , z 3 - z 1 (доказательства этих равенств приведены в статье, посвященной вычислению координат вектора по координатам точек), тогда получается, что:

n → = M 1 M 2 → × M 1 M 3 → = i → j → k → x 2 - x 1 y 2 - y 1 z 2 - z 1 x 3 - x 1 y 3 - y 1 z 3 - z 1

Если мы вычислим определитель, то получим необходимые нам координаты нормального вектора n → . Теперь мы можем записать нужное нам уравнение плоскости, проходящей через три заданные точки.

2. Второй подход нахождения уравнения, проходящей через M 1 (x 1 , y 1 , z 1) , M 2 (x 2 , y 2 , z 2) , M 3 (x 3 , y 3 , z 3) , основан на таком понятии, как компланарность векторов.

Если у нас есть множество точек M (x , y , z) , то в прямоугольной системе координат они определяют плоскость для заданных точек M 1 (x 1 , y 1 , z 1) , M 2 (x 2 , y 2 , z 2) , M 3 (x 3 , y 3 , z 3) только в том случае, когда векторы M 1 M   → = (x - x 1 , y - y 1 , z - z 1) , M 1 M 2   → = (x 2 - x 1 , y 2 - y 1 , z 2 - z 1) и M 1 M 3   → = (x 3 - x 1 , y 3 - y 1 , z 3 - z 1) будут компланарными.

На схеме это будет выглядеть так:

Это будет означать, что смешанное произведение векторов M 1 M → , M 1 M 2 → , M 1 M 3 → будет равно нулю: M 1 M → · M 1 M 2 → · M 1 M 3 → = 0 , поскольку это является основным условием компланарности: M 1 M   → = (x - x 1 , y - y 1 , z - z 1) , M 1 M 2   → = (x 2 - x 1 , y 2 - y 1 , z 2 - z 1) и M 1 M 3   → = (x 3 - x 1 , y 3 - y 1 , z 3 - z 1) .

Запишем полученное уравнение в координатной форме:

После того, как мы вычислим определитель, мы сможем получить нужное нам уравнение плоскости для трех не лежащих на одной прямой точек M 1 (x 1 , y 1 , z 1) , M 2 (x 2 , y 2 , z 2) , M 3 (x 3 , y 3 , z 3) .

От полученного в результате уравнения можно перейти к уравнению плоскости в отрезках или к нормальному уравнению плоскости, если этого требуют условия задачи.

В следующем пункте мы приведем примеры того, как указанные нами подходы реализуются на практике.

Примеры задач на составление уравнения плоскости, проходящих через 3 точки

Ранее мы выделили два подхода, с помощью которых можно найти искомое уравнение. Давайте посмотрим, как они применяются в решениях задач и когда следует выбирать каждый из них.

Пример 1

Есть три точки, не лежащие на одной прямой, с координатами M 1 (- 3 , 2 , - 1) , M 2 (- 1 , 2 , 4) , M 3 (3 , 3 , - 1) . Составьте уравнение плоскости, проходящей через них.

Решение

Используем поочередно оба способа.

1. Найдем координаты двух нужных нам векторов M 1 M 2 → , M 1 M 3 → :

M 1 M 2 → = - 1 - - 3 , 2 - 2 , 4 - - 1 ⇔ M 1 M 2 → = (2 , 0 , 5) M 1 M 3 → = 3 - - 3 , 3 - 2 , - 1 - - 1 ⇔ M 1 M 3 → = 6 , 1 , 0

Теперь вычислим их векторное произведение. Вычисления определителя расписывать при этом не будем:

n → = M 1 M 2 → × M 1 M 3 → = i → j → k → 2 0 5 6 1 0 = - 5 · i → + 30 · j → + 2 · k →

У нас получился нормальный вектор плоскости, которая проходит через три искомые точки: n → = (- 5 , 30 , 2) . Далее нам нужно взять одну из точек, например, M 1 (- 3 , 2 , - 1) , и записать уравнение для плоскости с вектором n → = (- 5 , 30 , 2) . Мы получим, что: - 5 · (x - (- 3)) + 30 · (y - 2) + 2 · (z - (- 1)) = 0 ⇔ - 5 x + 30 y + 2 z - 73 = 0

Это и есть нужное нам уравнение плоскости, которая проходит через три точки.

2. Используем другой подход. Запишем уравнение для плоскости с тремя точками M 1 (x 1 , y 1 , z 1) , M 2 (x 2 , y 2 , z 2) , M 3 (x 3 , y 3 , z 3) в следующем виде:

x - x 1 y - y 1 z - z 1 x 2 - x 1 y 2 - y 1 z 2 - z 1 x 3 - x 1 y 3 - y 1 z 3 - z 1 = 0

Сюда можно подставить данные из условия задачи. Поскольку x 1 = - 3 , y 1 = 2 , z 1 = - 1 , x 2 = - 1 , y 2 = 2 , z 2 = 4 , x 3 = 3 , y 3 = 3 , z 3 = - 1 , в итоге мы получим:

x - x 1 y - y 1 z - z 1 x 2 - x 1 y 2 - y 1 z 2 - z 1 x 3 - x 1 y 3 - y 1 z 3 - z 1 = x - (- 3) y - 2 z - (- 1) - 1 - (- 3) 2 - 2 4 - (- 1) 3 - (- 3) 3 - 2 - 1 - (- 1) = = x + 3 y - 2 z + 1 2 0 5 6 1 0 = - 5 x + 30 y + 2 z - 73

Мы получили нужное нам уравнение.

Ответ: - 5 x + 30 y + 2 z - 73 .

А как быть, если заданные точки все же лежат на одной прямой и нам нужно составить уравнение плоскости для них? Здесь сразу надо сказать, что это условие будет не совсем корректным. Через такие точки может проходить бесконечно много плоскостей, поэтому вычислить один-единственный ответ невозможно. Рассмотрим такую задачу, чтобы доказать некорректность подобной постановки вопроса.

Пример 2

У нас есть прямоугольная система координат в трехмерном пространстве, в которой размещены три точки с координатами M 1 (5 , - 8 , - 2) , M 2 (1 , - 2 , 0) , M 3 (- 1 , 1 , 1) . Необходимо составить уравнение плоскости, проходящей через нее.

Решение

Используем первый способ и начнем с вычисления координат двух векторов M 1 M 2 → и M 1 M 3 → . Подсчитаем их координаты: M 1 M 2 → = (- 4 , 6 , 2) , M 1 M 3 → = - 6 , 9 , 3 .

Векторное произведение будет равно:

M 1 M 2 → × M 1 M 3 → = i → j → k → - 4 6 2 - 6 9 3 = 0 · i ⇀ + 0 · j → + 0 · k → = 0 →

Поскольку M 1 M 2 → × M 1 M 3 → = 0 → , то наши векторы будут коллинеарными (перечитайте статью о них, если забыли определение этого понятия). Таким образом, исходные точки M 1 (5 , - 8 , - 2) , M 2 (1 , - 2 , 0) , M 3 (- 1 , 1 , 1) находятся на одной прямой, и наша задача имеет бесконечно много вариантов ответа.

Если мы используем второй способ, у нас получится:

x - x 1 y - y 1 z - z 1 x 2 - x 1 y 2 - y 1 z 2 - z 1 x 3 - x 1 y 3 - y 1 z 3 - z 1 = 0 ⇔ x - 5 y - (- 8) z - (- 2) 1 - 5 - 2 - (- 8) 0 - (- 2) - 1 - 5 1 - (- 8) 1 - (- 2) = 0 ⇔ ⇔ x - 5 y + 8 z + 2 - 4 6 2 - 6 9 3 = 0 ⇔ 0 ≡ 0

Из получившегося равенства также следует, что заданные точки M 1 (5 , - 8 , - 2) , M 2 (1 , - 2 , 0) , M 3 (- 1 , 1 , 1) находятся на одной прямой.

Если вы хотите найти хоть один ответ этой задачи из бесконечного множества ее вариантов, то нужно выполнить следующие шаги:

1. Записать уравнение прямой М 1 М 2 , М 1 М 3 или М 2 М 3 (при необходимости посмотрите материал об этом действии).

2. Взять точку M 4 (x 4 , y 4 , z 4) , которая не лежит на прямой М 1 М 2 .

3. Записать уравнение плоскости, которая проходит через три различных точки М 1 , М 2 и M 4 , не лежащих на одной прямой.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Похожие статьи

  • Какую говядину лучше варить

    Покупка мяса - это самая существенная часть продовольственного бюджета любой семьи (за исключением вегетарианской). Кто-то предпочитает свинину, кто-то птицу, однако наиболее полезной и питательной считается говядина. Это мясо не самое...

  • Какие социальные сети существуют для общения с друзьями и родственниками

    Сегодня соцсети настолько прочно укоренились в нашей жизни, что состав пятерки самых популярных социальных площадок практически не меняется из года в год. Тем не менее, масштабы проникновения и использования этих соцсетей отличаются в...

  • Обзор самых новых лекарств от рака

    Предлагаю вашему вниманию простые, проверенные временем, средства народной медицины, которые помогут при онкологических заболеваниях .Звездчатка (мокрица). Сок растения, крепкий настой и отвар применяется для местных ванн и примочек при...

  • Самые действенные способы защиты от сглаза, порчи, колдовства, зависти

    Признаками магического нападения могут являться: любые физические, психоэмоциональные отклонения без особой на-то причины. С целью защиты в отражения удара в той же самой магии выработаны довольно мощные приемы, которые отрабатывались не...

  • Что значит "поставить крест"

    О каком кресте говорил Иисус своим ученикам? Куда они должны были следовать со своим крестом? Что такое крестный ход? Что означают выражения: «Креста на тебе нет!» или «Поставить на нем крест!» ВСЕСЛАВЪ (ГЛОБА Игорь Александрович),...

  • К чему снятся венки похоронные в доме

    Сны не могут не поражать своей парадоксальностью. Часто тот или иной негатив, увиденный во сне, на деле оборачивается счастьем и удачей, а позитивные вещи и явления сулят несчастья и разочарования в реальной объективной действительности....